
Contractible Edges and Peripheral Cycles 
in 3-Connected Graphs 

Alexander Slodkowski1 and Timothy Huber# 

1The university of Texas Rio Grand Valley, Edinburg, TX, USA 
#Advisor 

ABSTRACT 

Peripheral cycles (induced non-separating cycles) in a general 3-connected graph are analogous to the faces of a 
polyhedron. Using the works of various authors, this paper explores the distribution of contractible edges in 3-
connected graphs as needed to prove a major result originally by Tutte: each edge in a 3-connected graph is part of at 
least 2 peripheral cycles that share only the edge and its end vertices. A complete, alternative proof of this theorem is 
provided. The inductive step is generalized into a new independent lemma, which states that each edge in a 3-connected 
graph with a non-adjacent contractible edge has at least as many peripheral cycles as in the contracted one. 

I. Introduction

The theory of 3-connected graphs was created by Tutte in 1961 [Tut61]. A graph is 3-connected if it remains connected 
after removing one or two vertices together with their adjacent edges (all precise definitions used in the paper are in 
section II). One crucial notion in this theory is the concept of a contractible edge: an edge in a 3-connected graph is 
contractible if the graph remains 3-connected after the edge's contraction. Contractible edges have been extensively 
studied by many authors; in particular, by Ando et al [AES87], Ota and Saito [OtS88], and Saito [Sai90] in their works 
concerning the distribution of contractible edges in 3-connected graphs, which are used in this paper. 

Tutte [Tut61] introduced the notion of a peripheral cycle which generalizes to any 3-connected graph an 
analogue of the boundary of a region in a 3-connected planar graph (i.e. the graph of a polyhedron). This corresponds 
to the faces of a polyhedron. Tutte proved [Tut63] that a graph is planar iff for every edge, the graph has exactly two 
peripheral cycles containing it; in such a graph, the vertices of that edge are the only ones in common. He also proved 
that any edge in a general 3-connected graph has at least two peripheral cycles containing it. A goal here is to provide 
an alternative proof of Tutte's latter result. 

Theorem (3.4).  Let G be a 3-connected graph, and e ∈ E(G). Then there are peripheral cycles C1, C2 in G such that 
C1 ∩ C2 = G[v(e)]. 

There were other proofs of this theorem devised by Thomassen [Tho80], Ota and Saito [OtS88], and Kelmans 
[Kel81]. The proof presented here is new and independently developed, though similar in essence to the one presented 
by Thomassen. One of the differences of this proof compared to the previous ones is the use of a new lemma that may 
have other future applications. 

Lemma (3.1).  Let G be a 3-connected graph. Let e, f ∈ E(G) such that f  is contractible and not adjacent to e. By the 
definition of graph contraction, e ∈ E(G / f ). Let C1, … , Ck be peripheral cycles in G / f  that contain e such that for 
all  i ≠ j, Ci ∩ Cj = G[v(e)]. Then there are peripheral cycles D1, … , Dk in G such that for all  i ≠ j, Di ∩ Dj = G[v(e)] as 
well. 
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In addition to definitions, section II of this paper contains a basic lemma and results about the existence and 
pattern of distribution of contractible edges in 3-connected graphs, due to Tutte [Tut61], Ando et al [AES87], Halin 
[Hal69], and Saito [Sai90]. Section III contains the proof of lemma 3.1 and finishes with the proof of theorem 3.4. The 
presentation in this paper does not assume any prior knowledge of graph theory. 

II. Notations, Definitions, and Results Used

When words are underlined in a sentence, they are being defined there. Most definitions are based on Ando
et al 1987, Diestel 2005, Thomassen 1981, and Tutte 1961 [AES87][Die05][Tho80][Tut61]. 

Graphs and subgraphs. A graph G is a pair of disjoint sets (V, E) and a map  E → V2 / [(x,y) = (y,x)] . For the graph 
G, an element x of  V, denoted as x ∈ V(G), is called a vertex, and an element e of  E, denoted as e ∈ E(G), is called 
an edge. A set of vertices alone can be identified as a graph with those vertices and no edges. The unordered pair of 
vertices (x,y) assigned to an edge e are the ends of the edge; we say that x and y are incident to e, denoted x ∈ v(e). 
The set of edges in G of which the vertex x is an end will be denoted EG(x). The number of ends that the vertex x is 
part of is its degree, denoted dG(x). Two vertices are adjacent if there is an edge for which they are ends. Two edges are 
adjacent if they have the same end vertex. The set of vertices in G to which the vertex x is adjacent will be denoted 
VG(x). Two edges with both of the same ends are parallel. An edge where both ends are the same vertex is a loop. A 
simple graph cannot have parallel edges or loops (otherwise, the graph is a multigraph). All graphs discussed will be 
assumed to be simple graphs with |V(G)| being finite. For a simple graph, an edge with ends x,y can be written xy. The 
empty graph has no edges or vertices. A graph H is a subgraph of a graph G, denoted H ⸦ G, if  V(H) ⸦ V(G)  and  
E(H) ⸦ E(G), with the same incidence relations as G. A vertex x ∈ V(H) is a vertex of attachment if EH(x) ≠ EG(x). 
Given subgraphs A and B of G, define EG(A, B) = {e ∈ E(G)  |  V(A) ∩ v(e) ≠ ∅ , V(B) ∩ v(e) ≠ ∅ }. 

Operations on graphs. The union of subgraphs A & B (denoted A∪B) is defined by V(A∪B) = V(A) ∪ V(B) and 
E(A∪B) = E(A) ∪ E(B). Intersection of subgraphs is defined analogously: V(A∩B) = V(A) ∩ V(B) and E(A∩B) = 
E(A) ∩ E(B). Given a set of vertices U ⸦ V(G) , the induced subgraph of G on U, denoted G[U], is defined by V(G[U]) 
= U and E(G[U]) = {e ∈ E(G)  |  v(e) ⸦ U}. The subgraph G – U created by removing a vertex set U from a graph G 
is defined by V(G – U) = V(G) \ U and  E(G – U) = {e ∈ E(G)  |  U ∩ v(e) = ∅ }. The subgraph G – {x} can also be 
written as G – x. The subgraph G – H of G created by removing a graph H from a graph G is defined as  G – V(G∩H) . 
The subgraph G \ e created by removing an edge e from a graph G is defined by V(G \ e) = V(G) and E(G \ e)  = E(G) 
\ {e}. The graph G / e created from  G by contracting an edge e (with ends x,y) into a new vertex ve is defined by V(G 
/ e) = (V(G) \ {x,y}) ∪ {ve} and E(G / e) = E(G – {x,y}) ∪ {ef  |  f ∈ E(G) \ e, v(f ) ∩ {x,y} ≠ ∅ , v(ef) = {ve} ∪ 
(v(f ) \ {x,y})}. 

Paths and cycles. A path H in G is a non-empty subgraph of G in which the edges can be formed into an ordered list 
such that each edge is adjacent to the next one in the list, and all vertices have degree 1 or 2 in H. Its length is |E(H)|, 
with |S| denoting the number of elements in a set S. If two vertices x,y have degree 1 in the path H, they are its ends; 
H is a path from x to y, also called an x-y path. Otherwise, the path is a cycle and can be referred to as a path from x to 
x for any x ∈  V(H). A k-cycle is a cycle of length k. For a cycle H in G, an edge in G – E(H) which whose ends are 
in H is a chord. An induced cycle in G is an induced subgraph of G that is also a cycle; it has no chords. 

Connectivity. A non-empty graph is connected if there is a path between each pair of distinct vertices. An induced k-
cycle H, for k > 2, is a peripheral cycle if G – H is connected. A set of vertices U for which G – U is not connected is 
a cut set. A maximal subgraph with a certain property is a subgraph which is not contained in any other subgraph 
having that property. A graph G is k-connected for an integer k > 1 if |V(G)| > k and the subgraph created by removing 
any k-1 vertices from G remains connected; i.e. the smallest cut set must have at least k vertices. Most of this paper 
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will be concerned with 3-connected graphs. For a 3-connected graph G, if G/e is 3-connected, then e is a contractible 
edge in G. 
Lemma 2.1. (Folklore).  Suppose H ⸦ G is connected. If, for any vertex x of G – H, there is a path in G from x to some 
vertex of H, then G is connected. 
 
Proof.  We need to show that there is a path connecting any two vertices of G. 
 
Case I:    Let a,b ∈ V(H). Since H is connected, there is an a-b path in G. 
 
Case II:   Let a ∈ V(H), b ∈ V(G – H). By assumption, there is a b-v path P0 in G for some v ∈ V(H). Then there is 
p ∈ V(P0) such that p is the first vertex from b that is not in V(G – H). Let P1 be the b-p path that is a subgraph of P0. 
Since H is connected, there is a p-a path P2 in H. Since the p-a path P2 ⸦ H, and P1∩H = {p}, we see that P1 ∪ P2 is 
an a-b path in G. 
 
Case III:  Let a,b ∈ V(G – H). By assumption, there is an a-u path P1 in G and a b-v path P2 in G for some u,v ∈ 
V(H). Also, since H is connected, there is a u-v path P3 in H. We now need to find an a-b path in P1 ∪ P2 ∪ P3. Let p1 

∈ V(P1) be the first vertex from a that is also in P3 . Let Q1 be the a-p1 path that is a subgraph of P1, and let Q2 be the 
p1-v path that is a subgraph of P3 . We see that Q1 ∪ Q2 is an a-v path in G. Similarly, Let p2 ∈ V(Q1 ∪ Q2) be the 
first vertex from a that is also in P2 . Let Q3 be the a-p2 path that is a subgraph of Q1 ∪ Q2, and let Q4 be the p2-b path 
that is a subgraph of P2 . We see that Q3 ∪ Q4 is an a-b path in G. 
 
In either case, there is a path connecting any two vertices of G, so G is connected.  □ 
 
Theorem 2.2 [Tut61].  Let G be a 3-connected graph with |V(G)| ≥ 5. Then G has a contractible edge. 
 
A excellent simple proof of this theorem is provided by Robin Thomas [ThoR]. 
 
Theorem 2.3. [Sai90]  Let G be a 3-connected graph with |V(G)| ≥ 6. Suppose X ⸦ V(G) such that every contractible 
edge of G has an end in X. Then |X| > 2. 
 
In other words, the set of contractible edges of G needs more than 2 vertices to cover it. 
 
Corollary 2.4.  Let G be a 3-connected graph with |V(G)| ≥ 6, and let e ∈ E(G). Then there is a contractible edge f ∈ 
E(G) that is not adjacent to e. 
 
Proof.  Suppose every contractible edge is adjacent to e. Then every contractible edge of G has an end in v(e), and 
|v(e)| = 2. This immediately contradicts theorem 2.3.  □ 
 
III.  Peripheral cycles in 3-connected graphs 
 
Lemma 3.1.  Let G be a 3-connected graph. Let e, f ∈ E(G) such that f  is contractible and not adjacent to e. By the 
definition of graph contraction, e ∈ E(G / f ). Let C1, … , Ck be peripheral cycles in G / f  that contain e, such that for 
all  i ≠ j, Ci ∩ Cj = G[v(e)]. Then there are peripheral cycles D1, … , Dk in G such that for all  i ≠ j, Di ∩ Dj = G[v(e)] as 
well. 
 
Proof.  Let v(f ) = {u, v}, and let w ∈ V(G / f ) be the vertex created by contracting  f . By definition, e ∈ E(G – {u, 
v}) and G – {u, v} = (G / f ) – w. In particular, since e ∈ E(Ci), we have e ∈ E(Ci – w). Let C be one of the cycles 

Volume 10 Issue 2 (2021) 

ISSN: 2167-1907 www.JSR.org 3



C1, … , Ck . We will construct a peripheral cycle D in G such that C – w = D – {u, v}. The construction depends on 
whether w ∈ V(C), and if so, it further depends on the local geometry. 
 

 
 
Figure 1 
 
Case I: w ∉ V(C) 
 Since C ⸦ G / f  – w = G – {u, v}, C is also an induced cycle in G, not just in G / f . We know that (G / f ) – C 
is connected and w ∈ (G / f ) – C , so there is p ∈ V((G / f ) – C) ∩ VG(w), and so p ∈ V(G). By the definition of 
graph contraction, p must be adjacent to at least one of {u, v} in G, which are adjacent to each other. There is a 2-edge 
path in G connecting both u and v via p to G – C – {u, v} = (G / f ) – C , which is connected. By Lemma 2.1, G – C is 
connected, thus C is a peripheral cycle of G. For this case, our constructed cycle D is exactly C . 
 
Case II: w ∈ V(C) 
 Let E(C) = {wa1, a1a2, … , an-1an, anw}. Then C – w is an a1-an path in G – {u, v}. Let S1u = {d ∈ E(G)  |  
v(d ) = {a1, u}}, S1v = {d ∈ E(G)  |  v(d ) = {a1, v}}, Snu = {d ∈ E(G)  |  v(d ) = {an, u}}, and Snv = {d ∈ E(G)  |  v(d ) 
= {an, v}}. Each of these sets can contain at most one element, because G is assumed to be a simple graph. Since wa1 
∈ E(G / f ), at least one of S1u or S1v is not empty, and since wan ∈ E(G / f ), at least one of Snu or Snv is not empty. As 
a result, 2 ≤ |S1u ∪ S1v ∪ Snu ∪ Snv | ≤ 4. There are 4 possibilities for the local geometry in G due to the content of sets 
S1u , S1v , Snu , Snv ; we will consider these sub-cases separately. Figure 1 shows these possibilities, and figure 2 identifies 
the corresponding constructed cycle D. 
 Case II.a.:  S1u = Snv = ∅  or  S1v = Snu = ∅.   
Without loss of generality, assume S1u = Snv = ∅ . Define D = G[V(C – w) ∪ {u, v}]. We see that E(D) = {uv, va1, 
a1a2, … , an-1an, anu}, so D is an induced cycle. Also, G – D = G – {u, v} – V(C – w) = (G / f ) – w – V(C – w) = (G / 
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f ) – V(C), which is connected; D is a peripheral cycle. 
 Case II.b.:  S1u = Snu = ∅  or S1v = Snv = ∅ .   
 Case II.c.:  |S1u ∪ S1v ∪ Snu ∪ Snv | = 3; one of  S1u , S1v , Snu , Snv  is empty. 
The argument is the same in both cases; in either one, without loss of generality, we can assume S1u = ∅ . Define D = 
G[V(C – w) ∪ {v}]. We see that E(D) = {va1, a1a2, … , an-1an, anv}, so D is an induced cycle. Since G is 3-connected, 
G – {v, an} is connected, and so there must be a vertex p ∈ VG(u) \ {v, an}. Suppose p ∈ V(D). Since S1u = ∅,  p ≠ 
a1 . Let p = ax for some  1 < x < n . Then, by the definition of graph contraction, wax ∈ E(G / f ), so wax ∈ E(G[V(C)]) 
= E(C). But w in the cycle C is already adjacent to a1 and an ; contradiction. Therefore,  p ∉ V(D). Now, G – D – u = 
G – {u, v} – V(C – w) = (G / f ) – w – V(C – w) = (G / f ) – V(C), which is connected. Since G – D – u is connected, p 
∈ G – D – u, and up ∈ E(G), by Lemma 2.1, G – D is also connected; D is a peripheral cycle. 
 Case II.d.:  |S1u ∪ S1v ∪ Snu ∪ Snv | = 4. 
Since G / f  is 3-connected, G / f  – {a1 , an} is connected, and so there must be a vertex p ∈ VG / f  (w) \ {a1 , an}. 
Suppose p ∈ V(C), i.e. p = ax for some  1 < x < n . Then, wax ∈ E(G / f ), so wax ∈ E(G[V(C)]) = E(C). But w in the 
cycle C is already adjacent to a1 and an ; contradiction. So p ∉ V(C). By the definition of graph contraction, since wp 

∈ E(G / f ), there is an edge d ∈ E(G) such that p ∈ v(d ) and v(d ) ∩ {u,v} ≠ ∅. Without loss of generality, assume 
d = up. Define D = G[V(C – w) ∪ {v}]. We see that E(D) = {va1, a1a2, … , an-1an, anv}, so D is an induced cycle. Since 
p ∉ V(C) ∪ {u, v}, p ∉ V(D). Now, G – D – u = G – {u, v} – V(C – w) = (G / f ) – w – V(C – w) = (G / f ) – V(C), 
which is connected. Since G – D – u is connected, p ∈ G – D – u, and up ∈ E(G), by Lemma 2.1, G – D is also 
connected; D is a peripheral cycle. 
 

 
 
Figure 2 
 

For each Ci, we construct Di according to the above procedure. Since for all  i ≠ j, Ci ∩ Cj = G[v(e)] and w ∉ 
v(e), only one of C1, … , Ck can possibly contain w. If one exists, identify this cycle Cx . For all  i ≠ x, Ci  falls into case 
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I, so Ci = Di . We also have Cx – w = Dx – {u, v}, with w ∈ V(Cx) and {u, v} ∩ V(Dx) ≠ ∅. No other Ci can contain w, 
and no other Di can contain either u or v, so for all  i ≠ x, Ci ∩ Cx = Ci ∩ (Cx – w) = Di ∩ (Dx – {u, v}) = Di ∩ Dx . 
Furthermore, for all i, j ≠ x, Ci ∩ Cj = Di ∩ Dj . Therefore, for all  i ≠ j, Di ∩ Dj = Ci ∩ Cj = G[v(e)].  □ 
 
The proof can be modified to show that if  C1, … , Ck are merely distinct peripheral cycles in G / f  that contain e, then 
there are distinct peripheral cycles D1, … , Dk in G that contain e. We will make the statement and proof explicitly. 
 
Lemma 3.2.  Let G be a 3-connected graph. Let e, f ∈ E(G) such that f  is contractible and not adjacent to e. By the 
definition of graph contraction, e ∈ E(G / f ). Let C1, … , Ck be distinct peripheral cycles in G / f  that contain e. Then 
there are distinct peripheral cycles D1, … , Dk in G as well. 
 
Proof.  Let v(f ) = {u, v}, and let w ∈ V(G / f ) be the vertex created by contracting  f . By definition, e ∈ E(G – {u, 
v}) and G – {u, v} = (G / f ) – w. In particular, since e ∈ E(Ci), we have e ∈ E(Ci – w). Let C be one of C1, … , Ck . 
We will construct a peripheral cycle D in G such that C – w = D – {u, v}. As in Lemma 3.1, the construction depends 
on whether w ∈ V(C), and if so, it further depends on the local geometry. 
 
Case I: w ∉ V(C) As with Lemma 3.1, our constructed cycle D is exactly C , with the same reasoning. 
Case II: w ∈ V(C) Unlike in Lemma 3.1, there can be more than one cycle in which this holds. However, the 
construction of D remains the same, along with the proof that it is a peripheral cycle. 
 

Suppose that for some i ≠ j, we have Di = Dj, despite Ci ≠ Cj. Since Ci ≠ Cj, there is x ∈ V(Ci) such that x ∉ 
V(Cj). We have  Ci – w = Di – {u, v} = Dj – {u, v} = Cj – w. Suppose x ≠ w. Then x ∈ V(Cj); contradiction. So x = w, 
giving us w ∈ V(Ci) and w ∉ V(Cj). By our construction of Di and Dj, Di contains at least one of {u, v} while Dj 
contains neither; this contradicts Di = Dj. Therefore, all the Di are distinct. □ 
 
Lemma 3.3. Let G be a 3-connected graph on 4 or 5 vertices, and e ∈ E(G). Then there are peripheral cycles C1, C2 
in G such that C1 ∩ C2 = G[v(e)]. 
 
Proof.  I.  n = 4. The only 3-connected graph on 4 vertices is the tetrahedron K4 . By the known properties of this 
graph, every edge e is part of exactly 2 peripheral cycles C1, C2 of length 3. The third vertex is different for each cycle, 
so C1 ∩ C2 = G[v(e)]. 
 

II.  n = 5. This case can be done by brute force checking of every graph on 5 vertices, but a more elegant 
argument is given here. By theorem 2.2, G has a contractible edge f . After contraction, G / f  must be 3-connected and 
have 4 vertices; the only such graph is the tetrahedron K4 . Therefore, any 3-connected graph on 5 vertices can be 
obtained by splitting a vertex of a tetrahedron. Due to symmetry, any vertex can be used. This vertex has degree 3, so 
the vertices of the corresponding edge in G can have at most degree 4, and they must have at least 3, because G is 3-
connected. So there are 3 options for their degrees: 3 & 3, 3 & 4, or 4 & 4. These correspond respectively to the graphs 
of the square pyramid, triangular hexahedron (bipyramid), and K5 (the graph on 5 vertices with all edges). For the first 
two, there exist exactly 2 peripheral cycles for every edge, and they share only the vertices of that edge. For the last, 
there exist exactly 3 peripheral cycles for every edge, and they share only the vertices of that edge. 
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Figure 3 
 
Theorem 3.4. [Tut63]  Let G be a 3-connected graph, and e ∈ E(G). Then there are peripheral cycles C1, C2 in G such 
that C1 ∩ C2 = G[v(e)]. 
 
Proof.  By contradiction. Suppose the theorem is false. Then, let G be a graph on the smallest number of vertices for 
which it is false, and let n = |V(G)|. Since G is 3-connected, n ≥ 4. By lemma 3.3, n cannot be 4 or 5, so n ≥ 6. By 
corollary 2.4, there is a contractible edge f ∈ E(G) that is not adjacent to e. Let v(f ) = {u, v}. Since e ∈ E(G / f ) and 
|V(G / f )| = n-1 < n, there are peripheral cycles C1, C2 in G / f  such that C1 ∩ C2 = G[v(e)].  By lemma 3.1, there are 
peripheral cycles D1, D2 in G such that D1 ∩ D2 = C1 ∩ C2 = G[v(e)].  □ 
 

IV. Conclusions 
 
Lemma 3.1 and 3.2 are new results. Lemma 3.1 is used to provide a novel, conceptually simplified proof of a well-
known theorem by Tutte (Theorem 3.4). Since Lemma 3.1 is stronger than necessary to prove Tutte's theorem, it stands 
to reason that some extension of Theorem 3.4 could be proven using Lemma 3.1. Furthermore, Kriesell [Kri00] 
provides possible tools to do this. 
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