
Can neural networks count digit frequency?

Padmaksh Khandelwal1 and Viveka Kulharia#

1Sir Padampat Singhania School at Kota, India
#Advisor

ABSTRACT

In this research, we aim to compare the performance of different classical machine learning models and neural net-
works in identifying the frequency of occurrence of each digit in a given number. It has various applications in machine
learning and computer vision, e.g. for obtaining the frequency of a target object in a visual scene. We considered this
problem as a hybrid of classification and regression tasks. We carefully create our own datasets to observe systematic
differences between different methods. We evaluate each of the methods using different metrics across multiple da-
tasets. The metrics of performance used were the root mean squared error and mean absolute error for regression
evaluation, and accuracy for classification performance evaluation. We observe that decision trees and random forests
overfit to the dataset, due to their inherent bias, and are not able to generalize well. We also observe that the neural
networks significantly outperform the classical machine learning models in terms of both the regression and classifi-
cation metrics for both the 6-digit and 10-digit number datasets.

Introduction

Some of the fundamental aspects of deep learning was introduced quite early, e.g. backpropagation [4] and deep
convolutional neural networks [5], however, it required an increase in computational power and access to large da-
tasets [6, 7, 8] to get mainstream. Recently, these learning techniques have been shown to be successful in different
tasks like playing the game of Go [9] and even the task of question-answering interactions, e.g. instructGPT [10]
which led to recently popular ChatGPT.

In this paper, we show that it is still not easy to use the recent machine learning models for a simple but
important task of counting the frequency of different digits in a given sequence of numbers, e.g. Figure 1 shows that
even ChatGPT is not good at this task. This task has several downstream applications, e.g. counting the number of
objects detected in a scene [15, 16]. We compare different classical machine learning and neural network-based meth-
ods for this task. As part of classical methods, we utilize decision trees [11, 12] and random forests [13,14]. Thus, in
this research work, we try to understand classical machine learning and neural network architectures and their effects.

Figure 1: Output of ChatGPT for our problem statement. The frequency of each digit in 1101111 should be 0 occurring
once, 1 occurring 6 times, and the rest of the digits occurring 0 times.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 1

Decision Tree and Random Forests: A decision tree is created using a binary split which decides the branch to allocate
for a data sample. The quality of a split is decided by a measure of impurity, e.g. “gini”, which can be similar to the
sum of the standard deviation of samples lying on each side of the split [17, 18], hence the best split is likely to have
the least “gini” score. Refer to Figures 6 to 9 to see decision tree structures. Decision trees can face the issue of
overfitting which can be avoided by using random forests [13, 14]. The basic idea behind random forests is to create
lots of large decision trees such that their predictions are uncorrelated [17] and then take the average of their predic-
tions, which is also called bagging [19]. There are different approaches to create uncorrelated models, e.g. by training
them on different subsets of data, by considering a random subset of columns for each split, etc. [13, 14, 17]. Random
forests have been shown to work quite well in practice, which is also evident from this work.

Our major contributions in this work are listed below:

● We systematically create our own datasets to bring out the differences in performance of different methods.
● We carefully split the datasets into training, validation and test sets to test the generalization capabilities of

different methods across dataset sizes.
● For fair evaluation of the methods, we do multiple runs of each method to obtain statistical results. We also

consider different metrics for both regression-based evaluation and accuracy-based evaluation.
● We also list specific examples to observe the overfitting behavior of decision trees and random forests which

is not observed in the neural networks.
● We also perform hyper-parameter tuning of the neural networks and provide our observation as part of the

ablation studies.

Methodology

In this work we tackle the task of counting the frequency of different digits in a given number, as shown in Figure 2
and Figure 3.

Dataset

For this we created our own datasets. We created two different datasets using 6-digit and 10-digit numbers. Both
datasets have 150,000 randomly generated numbers. To create the ground-truth count of each digit in the number, we
used a Python code. We further split both datasets in a 60:20:20 ratio for training, validation, and test set. So the
training set has 90,000 samples, the validation set has 30,000 samples, and the test set has 30,000 samples. The split
was done to allow for the fine-tuning of the hyperparameters of the neural networks on the validation set which can
later be tested on the unseen and unbiased test set, whose samples follow the same distribution as the training and
validation set.

The training set of size 90,000 represents 9% of the total possible 6-digit numbers. This can help us under-
stand the generalization of the performance of machine learning models to unseen 6-digit numbers. To further chal-
lenge the generalizability of the models and test their capabilities to learn from limited data, we also considered a 10-
digit numbers dataset as a 90,000-sized training set represents only 0.0009% of the total possible 10-digit numbers.
We show that this change in the fraction of seen dataset (from 9% to 0.0009%) has the least effect on the performance
of the neural networks [4,5] as compared to the classical machine learning models [11,12,13,14].

Implementation

For the implementation of the different machine learning models, we extensively used Jupyter Notebooks with the
scikit learn [1] and fastai [2] libraries. While scikit learn [1] has several built-in classical ML models, fastai [2] has

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 2

implementations of several state-of-the-art deep learning models. Using these libraries help us overcome the challenge
of tediously and manually assigning all hyperparameters and thus allows us to quickly experiment with multiple meth-
ods and techniques.

We decided to use the decision tree and random forest regressor as classical ML models. Decision trees [12]
build regression or classification models in the form of a tree structure. At every node, it splits a dataset into two
subsets such that the “gini” score is minimized, to incrementally develop the decision tree. The final result is a tree
with decision nodes and leaf nodes. A random forest [14] is a meta-estimator that fits a number of classifying decision
trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and avoid over-
fitting.

Figure 2: 6-Digit Original Dataset: a sequence of 6-digit number (rightmost column) and the corresponding count of
each digit

Figure 3: 10-Digit Original Dataset: a sequence of 10-digit number (rightmost column) and the corresponding count
of each digit

The dataset follows a specific labeling pattern; hence we believe that the decision tree could, perhaps, identify the
necessary comparisons to perfectly, or nearly perfectly, predict the pattern. Random forest in general is the best per-
forming and the most versatile classical ML model and is a key reason for its widespread popularity and, thus, also
stood out as a possibly strong baseline.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 3

Let 𝑥𝑥𝑖𝑖 be the 𝑖𝑖𝑡𝑡ℎ number or sample for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, let 𝑦𝑦𝑖𝑖 be the ground-truth label vector for the 𝑖𝑖𝑡𝑡ℎ number such that
𝑦𝑦𝑖𝑖𝑖𝑖 is the count of 𝑗𝑗𝑡𝑡ℎ digit for 0 ≤ 𝑗𝑗 ≤ 9, and 𝑦𝑦�𝑖𝑖 be the predicted vector for the 𝑖𝑖𝑡𝑡ℎ number such that 𝑦𝑦𝚤𝚤𝚤𝚤� is the count
of 𝑗𝑗𝑡𝑡ℎ digit for 0 ≤ 𝑗𝑗 ≤ 9.

The regression performance metrics we consider are root mean squared error and mean absolute error, the two popular
metrics in regression, and the classification metric we consider is accuracy. Root mean squared error is calculated as:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��
𝑛𝑛

𝑖𝑖=1

�
𝑙𝑙−1

𝑗𝑗=0

(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝚤𝚤𝚤𝚤�)2

𝑛𝑛𝑛𝑛

and the mean absolute error is calculated as:

𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝑛𝑛

𝑖𝑖=1

�
𝑙𝑙−1

𝑗𝑗=0

�𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝚤𝚤𝚤𝚤��
𝑛𝑛𝑛𝑛

Where, 𝑛𝑛 is the total number of samples (or numbers), 𝑙𝑙 is the length of output vector (which is 10 for the count of 10
digits), 𝑦𝑦𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ ground-truth label vector; and 𝑦𝑦�𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ predicted vector.

The problem statement can be tackled either using a regression method or classification method. The count
of each of the 10 digits is only limited to integers 0 to 6 for the 6-digit set and 0 to 10 for the 10-digit set. However, if
we consider a classification method, the presence of different digits would require an excessively complex and yet
underperforming multi-class multi-label classification method which may easily overfit the small fraction of real data
we have.

Therefore, to tackle this problem, we first implemented multi-class regression models and generated the two
error metrics and, then modified the predictions to be rounded off to the nearest whole number (predictions less than
zero rounded up to zero and those more than the total number of digits rounded down to the total digits themselves (6
and 10 respectively). We can therefore also consider accuracy metric over these predictions which we define as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝑛𝑛

𝑖𝑖=1

�
𝑙𝑙−1

𝑗𝑗=0

𝐼𝐼(𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝚤𝚤𝚤𝚤�)
𝑛𝑛𝑛𝑛

where, 𝐼𝐼(.) is an indicator function which is 1 when 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝚤𝚤𝚤𝚤� , otherwise 0. For this, a program was made to check if
each count of digits matched with the actual count and assigned it a ‘one’ if the count matched correctly, and ‘zero’
otherwise.

For example, if the 𝑖𝑖𝑡𝑡ℎ number is 𝑥𝑥𝑖𝑖=153,236, the corresponding ground-truth label vector is
𝑦𝑦𝑖𝑖=[0,1,1,2,0,1,1,0,0,0], representing the counts of digits 0 to 9, and the predicted vector is 𝑦𝑦�𝑖𝑖=[0,0,1,2,0,0,1,0,0,0],
then the accuracy of the method on the 𝑖𝑖𝑡𝑡ℎ sample is

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝑙𝑙−1

𝑗𝑗=0

𝐼𝐼(𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝚤𝚤𝚤𝚤�)
𝑛𝑛𝑛𝑛

 =
8

10
 = 0.8

where 𝐼𝐼(.) is an indicator function which is 1 when 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝚤𝚤𝚤𝚤� , otherwise 0.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 4

Modified Dataset

Finally, it was discovered that the single feature dataset (the number itself as the only independent column) could be
improved on by increasing the number of feature columns; we implemented it by placing each digit of the original
number into a separate input column and removing the “Number” column, resulting into 6 and 10 independent columns
respectively for the 6-digit and 10-digit datasets, refer Figure 4 and Figure 5. This had a small but noticeable improve-
ment in the decision tree’s performance [11,12] and a substantially larger improvement in random forest’s perfor-
mance [13,14]. For the neural networks, we only used this modified dataset.

Figure 4: 6-Digit Original Dataset with 16 columns: a sequence of 6-digit (rightmost 6 columns) and the correspond-
ing count of each digit (left columns)

Figure 5: 10-Digit Original Dataset with 20 columns: a sequence of 10-digit (rightmost 10 columns) and the corre-
sponding count of each digit (left columns)

All the neural networks were composed of input layers, dense linear layers, and dense non-linear layers,
which implement ReLUs (Rectified Linear Units) [6] as activation functions, SGD [3,4,5], and Adam optimizers [20].
For reference, a ReLU layer is used to implement a non-linearity in the neural network to better trace a non-linear
pattern, which is essentially an identity function for all non-negative values, and zero for negative values.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 5

Experiments

The results show that neural networks performed significantly better than the decision tree and random forest
models, especially when using the modified dataset. The best results were obtained by using the appropriate number
of layers, learning rate, and number of epochs. The results are shown in Tables 1, 2, 3, and 4. For reference, the
following keys are provided to identify the different models:

● Decision Tree 1 - Decision Tree trained on the original dataset
● Random Forest 1 - Random Forest trained on the original dataset
● Decision Tree 2 - Decision Tree trained on the modified dataset
● Random Forest 2 - Random Forest trained on the modified dataset
● Neural Network - fastai.tabular implemented neural network [3]
● Neural Network + Embedding - fastai.tabular neural network implemented with a hidden embedding [3].

We report RMSE, MAE and Accuracy metrics for each of the methods. We run each method multiple times

on the validation set to obtain statistical errors. The results are consistent for both the 6-digit and 10-digit datasets,
and by employing both the regression and classification metrics. However, it is key to note that even the neural net-
works do not have perfect accuracy, but it is almost 100%.

Table 1. 6-Digit Validation Set. For statistical error, each method was run 5 times.

Method RMSE MAE Accuracy

Decision Tree 1 0.523±0.000 0.253±0.000 90.206%

Decision Tree 2 0.516±0.000 0.249±0.001 75.888%

Random Forest 1 0.463±0.000 0.277±0.000 89.777%

Random Forest 2 0.281±0.001 0.213±0.001 92.886%

Neural Network 0.178±0.015 0.136±0.015 98.957%

Neural Network + Embedding 0.180±0.015 0.135±0.010 98.366%

Table 2. 6-Digit Test Set

Method RMSE MAE Accuracy

Decision Tree 1 0.522 0.253 90.201%

Decision Tree 2 0.516 0.250 75.861%

Random Forest 1 0.463 0.277 93.058%

Random Forest 2 0.281 0.215 93.015%

Neural Network 0.181 0.134 99.440%

Neural Network + Embedding 0.183 0.139 99.156%

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 6

Table 3. 10-Digit Validation Set. For statistical error, each method was run 5 times.

Method RMSE MAE Accuracy

Decision Tree 1 0.997±0.000 0.693±0.000 44.167%

Decision Tree 2 1.021±0.001 0.714±0.000 42.994%

Random Forest 1 0.862±0.000 0.666±0.000 44.583%

Random Forest 2 0.623±0.001 0.499±0.001 53.019%

Neural Network 0.293±0.025 0.221±0.018 98.256%

Neural Network + Embedding 0.210±0.014 0.162±0.010 96.965%

Table 4. 10-Digit Test Set

Method RMSE MAE Accuracy

Decision Tree 1 0.998 0.693 43.986%

Decision Tree 2 1.018 0.712 43.198%

Random Forest 1 0.864 0.666 44.545%

Random Forest 2 0.620 0.495 52.827%

Neural Network 0.303 0.216 97.833%

Neural Network + Embedding 0.274 0.208 97.920%

Observations on Classical ML Models

Generalization: The performance of classical ML models is greatly affected by the number of digits, the RMSE and
MAE nearly doubled, whereas accuracy halved. On the contrary, the neural networks are only slightly affected or
nearly unaffected by the increase in the digits, especially considering the large difference in the proportionality of
more possible values in 6-digit and 10-digit numbers as mentioned earlier.

Modified dataset effect: It is observed that the modified dataset improves the performance of both decision trees and
random forests, however, substantially more for random forests. This could be attributed to the tendency of random
forests to generate many decision trees over multiple different features, instead of a single feature which generated
the one and only possible tree given in the figures below. The averaging process of random forests [13,14] over several
decision trees in the modified dataset and on multiple batches of random, unbiased data is responsible for generating
different outputs every time they are run and causing substantially less error and more accuracy compared to the
performance on the original dataset.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 7

This could also be the explanation for the decision trees and random forests generating exactly the same performance
consistently on the original datasets for both 6-digit and 10-digit numbers across multiple runs, thus, having no change
in the statistical error, as only a single decision tree is possible and only a single set of decision trees and their respec-
tive batches are being computed in the random forest.

Decision tree overfits: As we used decision tree analysis methods, it was observed that the decision tree had created
over 85,000 leaf nodes for the training dataset of 90,000 numbers for both datasets, which is a clear example of an
overfitting and memorizing model.

The random forest model performed slightly better than the decision tree model; however, it is worth mentioning that
as a random forest creates many decision trees on unbiased data and bags them together, it will always outperform
decision trees. It is also worth noting that the decision tree created many numerical splits to make nodes and for
inference, it simply outputs the average of the count of each digit across numbers reaching a leaf node during training,
refer to Figure 6, Figure 7, Figure 8 and Figure 9, which shows that both the classical ML models clearly could not
interpret any patterns.

(a) (b)

Figure 6: First 6 nodes of the decision tree for the original 6-digit training dataset, (a): the top part, and (b): the lower
part of the decision tree.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 8

Figure 7: First 6 nodes of the decision tree for the modified 6-digit training dataset

(a) (b)

Figure 8: First 6 nodes of the decision tree for the original 10-digit training dataset (a): the top part, and (b): the lower
part of the decision tree.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 9

(a) (b)

Figure 9: First 6 nodes of the decision tree for the modified 10-digit training dataset (a): the top part, and (b): the
lower part of the decision tree.

Some Special Cases

We also experimented with a handful of outlier data points or numbers to observe predictions of the classical ML
models. For the original 6-digit dataset we tried the two pairs of consecutive numbers: (999998, 999999) and (100000,
100001). The decision tree predicted [0, 0, 0, 0, 1, 0, 0, 0, 0, 5] for both numbers of the first pair and [4, 2, 0, 0, 0, 0,
0, 0, 0, 0] for both numbers of the second pair, and random forest after undergoing the classification modification
predicted [0, 0, 0, 0, 0, 0, 0, 1, 0, 5] for the first pair and [4, 2, 0, 0, 0, 0, 0, 0, 0, 0] for the second pair. Rerunning the
classical ML models on the modified dataset still generated similar results: the decision tree predicted [0, 0, 0, 0, 1, 0,
0, 0, 0, 5] for the first pair and [3, 3, 0, 0, 0, 0, 0, 0, 0, 0] for the second pair, and random forest after undergoing the
classification modification predicted [0, 0, 0, 0, 0, 0, 0, 1, 1, 5] for first pair and [3, 3, 0, 0, 0, 0, 0, 0, 0, 0] for the
second. Thus these classical methods are making the same prediction for the successive numbers. This shows the
inherent limitation of the decision tree and random forest, as they are splitting the nodes based on the numeric values
of the numbers and not the count of each digit.

For the 10-digit dataset, we tried the two pairs of numbers: (9999999999, 9999999998) and (1000000000,
1000000001). The decision tree predicted [0, 1, 1, 0, 2, 0, 0, 0, 0, 6] for the former and [4, 2, 0, 1, 2, 0, 0, 0, 1, 0] for
the latter. The random forest, whereas, predicted [0.02, 0.61, 0.71, 0.26, 1.31, 0.2, 0.29, 0.35, 0.75, 5.5] for the former
and [3.57, 1.67, 0.52, 0.95, 1.81, 0.05, 0.4, 0.02, 0.57, 0.44] for the latter which after the classification modification
are [0, 1, 1, 0, 1, 0, 0, 0, 1, 6] and [4, 2, 0, 1, 2, 0, 0, 0, 1, 0] respectively. The results are similar for the modified
dataset. Evidently, this is another indication of the memorization that these classical ML models underwent and how
they failed poorly in pattern recognition, which is even more evident in the 10-digit dataset.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 10

Observations on Neural Networks

The neural networks, as aforementioned, outperformed classical ML models in every scenario and for both datasets.
According to our hyperparameter optimization, we found the following best values for all the different scenarios using
16 epochs and [x,y,z] layers, where x,y, and z respectively are the number of parameters in each of the non-linear
(ReLU [6]) hidden layers:

● 6-Digit numbers
○ Neural Network - Layers = [96,96,96], Learning Rate = 0.01
○ Neural Network with Embedding - Layers = [96,96,96], Learning Rate = 0.01, Embeddings are

[10,100] by considering each of the 10 unique digits
● 10-Digit numbers

○ Neural Network - Layers = [128,128,128], Learning Rate = 0.01
○ Neural Network with Embedding - Layers = [256,256,256], Learning Rate = 0.005, Embeddings

are [10,100] by considering each of the 10 unique digits

It could be hypothesized that as the neural networks utilize stochastic gradient descent to minimize loss by altering
the parameters or weights and implement non-linearities through the ReLU layers, they at least trace out the non-linear
pattern very well [4,5]. The 100-dimensional embeddings were used as an input feature for each of the ten possible
values. Overall, they did not significantly alter the predictions across the different metrics. It is an intriguing detail
that the classical ML models, which gave an accuracy of nearly 90% for 6-digit numbers, although by memorization,
fell to less than or nearly 50% accuracy for 10-digit ones. On the contrary, neural networks hardly changed by even
1% in accuracy across datasets. They also produced less than half the errors compared to the best classical ML model
baseline, which is the random forest, in both metrics. The following loss curve vs the number of epochs graphs, refer
to Figure 10(a), 10(b), 10(c) and 10(d), indicate that the neural networks did not undergo any form of overfitting or
memorization. This shows the generalization capability of neural networks.

Some Special Cases And Comparisons With ChatGPT

Similar to the classical ML models, we also worked with the following consecutive numbers for the neural networks:
6-digit numbers – (999999, 999998) and (100000, 100001); 10-digit numbers – (9999999999, 9999999998) and
(1000000000,1000000001). Here are firstly the results by ChatGPT3 when asked for the task for recognizing the
frequency of each digit in the above numbers, refer to Figure 11(a), 11(b), 11(c) and 11(d).

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 11

(a) (b)

(c) (d)

Figure 10. (a)-(d): Loss (MSE) Curves for Neural Networks vs Number of Epochs

To summarize the results, except for the number 9,999,999,999 which it predicted completely correctly, all the pre-
dictions by ChatGPT3 were even worse than the classical ML models. This further showcases the deceptiveness of
the simplicity of the task. The neural networks, on the other hand, produced the following results after the classification
modification:

● 6 - Digit Dataset:
○ Input: (999999, 999998) and (100000, 100001)
○ Neural Network output: [0,0,0,0,0,0,0,0,0,5] and [0,0,0,0,0,0,0,0,1,4] for the former pair, and

[5,1,0,0,0,0,0,0,0,0] and [4,2,0,0,0,0,0,0,0,0] for the latter.
○ Neural Network with Embedding output: [0,0,0,0,0,0,0,0,6] and [0,0,0,0,0,0,0,0,1,5] for the former

pair, and [5,3,0,0,0,0,0,0,0,0] and [3,3,0,0,0,0,0,0,0,0] for the latter.
● 10 - Digit Dataset:

○ Input: (9999999999, 9999999998) and (1000000000,1000000001)
○ Neural Network output: [0,0,0,0,1,1,0,0,0,9] and [0,0,0,0,1,1,0,0,1,8] for the former pair, and

[7,2,1,0,1,0,0,1,0,0] and [7,2,1,0,0,0,1,0,0,0] for the latter.
○ Neural Network with Embedding output: [0,1,0,0,0,1,0,2,2,9] and [0,0,0,0,1,0,0,0,1,9] for the for-

mer pair, and [9,1,0,0,0,1,0,0,0,0] and [9,2,0,0,0,0,2,0,0,1] for the latter.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 12

(a) (b)

(c) (d)

Figure 11. (a) - (d): ChatGPT3 responses for the above-mentioned numbers

Interestingly, half of these predictions are incorrect but the other half are either completely correct or close
to it with one or so digits wrong. They, at least, do not make the exact same prediction for the successive numbers
unlike the classical ML models which means that they are partially learning the pattern. However, similar to classical
ML models, their performance significantly worsens for 10-digit numbers as well. The proportion of data seems to
play a significant role in the performance of all the models but with varying degrees.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 13

Ablation Study

When running the neural networks on the 6-digit and 10-digit test sets, we found some alternative hyperparameter
values, learning rate (lr) and layers, which gave significantly better outputs in terms of the regression metrics. We
have mentioned them in the table given below, refer to Table 5.

Table 5. Alternative hyperparameter values for neural networks on the test sets

6-Digit Test Set Hyperparameters RMSE MAE

Neural Network + Embedding lr = 1e-5, layers =
(96,96,96)

0.093 0.073

10-Digit Test Set

Neural Network lr = 0.003, layers =
[128,128,128]

0.171 0.130

Neural Network + Embedding lr=5e-3, layers =
[256,256,256]

0.221 0.168

Conclusion

In this research work we compared the performance of different classical machine learning models and neural net-
works in identifying the frequency of occurrences of each digit in a given number. We observed that the neural net-
works significantly outperformed the classical ML models in terms of both the regression and classification metrics
for both the 6-digit and 10-digit number datasets.

We discovered that some of the behaviours of the classical machine learning models such as split condition
and averaging made the trees extremely biased and led to overfitting and memorization. Thus they failed in pattern
recognition. The neural networks, on the other hand, thanks to their non-linear optimization were substantially more
successful in recognizing the evident pattern. The accuracy was greater than 95% for all scenarios which indicates
that the deep learning models did, in fact, learn the pattern accurately. This research further acknowledges the vast
learning capabilities and adaptability of neural networks that have been stated in previous research work.

All the experiments were conducted on a MacBook M2 Air in a matter of two months. With more time, one
could potentially extend the research to other datasets with larger numbers of digits and may find various other trends
with neural networks. Regardless, they already seem to be reliable in learning this unconventional, yet simple pattern.
Furthermore, despite the research being experimental in nature, the results obtained in this research can potentially be
applied to downstream computer vision problems, such as counting the number of times a specific object occurs in an
image, which is an essential task in many computer vision applications [6,8,15,16]. Also, the ability to detect the most
frequent elements can be used to detect the rare elements, which can have applications in healthcare, e.g. to detect rare
diseases.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 14

References

[1] “scikit-learn Machine Learning in Python”, in https://scikit-learn.org.
[2] Jeremy Howard and Sylvain Gugger, in “fastai A Layered API for Deep Learning”.
[3] “Welcome to fastai”, in https://docs.fast.ai/.
[4] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989).

Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
[5] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[6] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural

networks. Advances in neural information processing systems, 25(1106-1114), 1.
[7] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556.
[8] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 770-778).
[9] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017).

Mastering the game of go without human knowledge. nature, 550(7676), 354-359.
[10] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training

language models to follow instructions with human feedback. Advances in Neural Information Processing
Systems, 35, 27730-27744.

[11] von Winterfeldt, Detlof; Edwards, Ward (1986). Decision trees. Decision Analysis and Behavioral Research.
Cambridge University Press. pp. 63–89. ISBN 0-521-27304-8.

[12] Kaminski, B.; Jakubczyk, M.; Szufel, P. (2017). A framework for sensitivity analysis of decision trees. Central
European Journal of Operations Research. 26 (1), 135–159. doi:10.1007/s10100-017-0479-6. PMC 5767274.
PMID 29375266.

[13] Ho, T. K. (1995, August). Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition (Vol. 1, pp. 278-282). IEEE.

[14] Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
[15] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014). Microsoft

coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing.

[16] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information processing systems, 28.

[17] Howard, J. (2022) How random forests really work. Kaggle. https://www.kaggle.com/code/jhoward/how-
random-forests-really-work/

[18] Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets.
Machine learning, 11, 63-90.

[19] Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
[20] Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International Conference

for Learning Representations, San Diego, 2015.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org 15

https://scikit-learn.org/
https://docs.fast.ai/
https://www.kaggle.com/code/jhoward/how-random-forests-really-work/
https://www.kaggle.com/code/jhoward/how-random-forests-really-work/

