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ABSTRACT 
 
When a symmetrical rigid top rotates on a plane, it will encounter resistance to prevent it from falling due to gravity. 
According to various theoretical inferences and practical proofs, the original vertical kinetic energy of the top is con-
verted into horizontal kinetic energy because of unknown reason. I attribute this unknown reason to the horizontal 
circular motion of the top, and derive the specific movement trajectory of the top base on this, including three move-
ment trajectories and their conditions. 
 

Function Between Angle of Circle and Height 
 
Before we dive into the analysis, there is an important step, which is to derive the function between the angle and the 
height of a circle, and we will use this function in the subsequent analysis.  
 As Fig.1, under the action of gravity, a non-rotating top standing on a fixed point will fall along a circle 
with this fixed point as the center. Starting from the initial angle relative to the Z-axis, top rotates through an angle 
Δθ while descending a distance h. 

 
Figure 1 

 
 We can get a formula: 

ℎ = 2𝑟𝑟 ∗ sin �1
2
∆θ� ∗ cos (𝜋𝜋−∆𝜃𝜃

2
− θ0)    (Equ.1) 

 
 Convert Equ.1, we can obtain: 

∆θ = sin−1 �ℎ
𝑟𝑟
− sin �𝜋𝜋

2
− θ0�� + 𝜋𝜋

2
− θ0    (Equ.2) 
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Using Circular Motion to Analyze the Motion of a Symmetric Top 
 
It turns out that the top will do circular motion rather than falling when its rotation speed around its own axis of 
symmetry is high enough, which means there is an unknown force prevents the top from falling down and provides 
the centripetal force required for circular motion. 
 The motion of the top can be described by Euler’s angles φ, θ, and ψ, as shown in Fig.2 and Fig.3. The in-
ertia space is defined by the system as X, Y, Z, and the origin O is located at the bottom of the top. Since the gravita-
tional field is uniform, the effect of gravity can be described as the resultant of gravitational forces acting on the cen-
ter of gravity CG of the top, which has a distance d from the bottom of the top along the symmetry axis z. Addition-
ally, the bottom of the top is connected to the origin O by a rod of length r with negligible mass. 
 

 
Figure 2 
  

First of all, according to the Fig.2, it can be imagined that if there is not atmospheric friction and no Z-axis 
rod, the spinning top will fall down due to the gravity regardless of whether it rotates around the z-axis, and the rela-
tive velocity of any points of the top are the same from the view of x-z plane. In the other words, there is not speed 
difference between any points on the top from the view of x-z plane, including the top and the apex of the top. But if 
the apex of the top is connected via the Z-axis rod, the velocity of the apex must be zero relative to the rod. But the 
other parts of the top should fall due to the gravity and get a resultant velocity V1 at the CG of the top, which results 
in the apex having the same magnitude but opposite direction velocity, V1’, respect to the CG of the top. In addition, 
V1’ is generated by the support force of the Z-axis rod. 
 Since the apex has the velocity V1’ relative the CG of the top, this causes the top to rotate around the CG in 
the direction of the linear velocity V1’, and there is a velocity Vγ at a certain point of the top side of the spinning top. 
Let's first focus on the top cross-sectional area of the top, in this assumption, Vγ is located at the intersection of the 
top cross-sectional area and the top edge. 

Volume 13 Issue 3 (2024) 

ISSN: 2167-1907 www.JSR.org 2



 
Figure 3 

 
It's easier to deduce if using θ = 90° and look at the system from a top view, as shown in Fig.3. In this case, 

b1 = ψ * r1, a1 = Vγ. Since the top cross-sectional area is subjected to these two velocities, it is supposed to obtain a 
resultant velocity c1 with different direction and higher magnitude, as shown in Fig.3. But it turns out the rotation 
speed of the top around the z-axis is constant during the precession and nutation when the system is in the absence 
of other work, that means c1 has the same magnitude as b1. In order to ensure that c1 and the rotation direction 
around the z-axis are the same, the top must move from the original location described by solid line in Fig.3 to the 
new location described by dashed line, and the moving distance is D1. 

Then, the similar triangle theorem can be used in the case that only the top cross-sectional area of the top is 
focused: 

𝑏𝑏1
𝑎𝑎1

= 𝑟𝑟+𝐿𝐿
𝐷𝐷1

         (Equ.3) 

 
𝜓𝜓∗𝑟𝑟1
𝑉𝑉𝛾𝛾

= 𝑟𝑟+𝐿𝐿
(𝑟𝑟+𝐿𝐿)𝜙𝜙

            (Equ.4) 

 
Now, Let’s add some constrains, θ is an arbitrary angle, limited to 0 ≤ θ ≤ π, instead of fixed value 90°; The 

moving distance of CG, D2, will be considered rather than D1; The top cross-sectional area will be still focused. Fur-
thermore, the circular motion of the top that parallel to xy-plane will be considered, so Vα is used instead of Vγ. Fi-
nally, Equ.5 will be obtained according to Equ.4. 

𝜓𝜓∗𝑟𝑟1
𝑉𝑉𝛼𝛼

= 𝑟𝑟+𝑑𝑑
(𝑟𝑟+𝑑𝑑)𝜙𝜙

            (Equ.5) 

 
Even if the different θ results in the different relative position of C1 and Z-axis rod, the similar triangle theo-

rem can still be used. Just a reminder, the vector b1 always lies in the xy-plane. Then, Equ.5 can be derived as fol-
lows. 

𝜓𝜓∗𝑟𝑟1
𝑉𝑉1(𝑡𝑡𝑡𝑡𝑡𝑡)

′ 𝑟𝑟1
𝑟𝑟+𝑙𝑙 ∗sin (θ)

= 𝑟𝑟+𝑑𝑑
(𝑟𝑟+𝑑𝑑)𝜙𝜙

      (Equ.6) 

 

𝜙𝜙 = 𝑉𝑉1′∗sin (θ)
𝜓𝜓(𝑟𝑟+𝑙𝑙)

                  (Equ.7) 
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Then multiply both sides of Equ.7 by (r+d)sin(θ): 

𝐷𝐷2 =
𝑉𝑉1(𝑡𝑡𝑡𝑡𝑡𝑡)

′

𝜓𝜓(𝑟𝑟+𝑙𝑙)
∗ (𝑟𝑟 + 𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠2(θ)          (Equ.8) 

 
Since the top will oscillate up and down, so considering the elapse of infinitesimal time, the difference of 

D2 will be dD2, and the difference of V1(top) will be dV1(top). Then, divide both sides of Equ.8 by dt: 

�̇�𝐷2 =
�̇�𝑉1(𝑡𝑡𝑡𝑡𝑡𝑡)

′

𝜓𝜓(𝑟𝑟+𝑙𝑙)
∗ (𝑟𝑟 + 𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠2(θ)          (Equ.9) 

 
Because V1(top)’ must be equal to V1(top), so �̇�𝑉1(𝑡𝑡𝑡𝑡𝑡𝑡)

′ is also equal to �̇�𝑉1(𝑡𝑡𝑡𝑡𝑡𝑡). Then, replace �̇�𝐷2 and �̇�𝑉1(𝑡𝑡𝑡𝑡𝑡𝑡)
′ 

with V2 and a1(top) respectively: 
𝑉𝑉2 =

𝑎𝑎1(𝑡𝑡𝑡𝑡𝑡𝑡)

𝜓𝜓(𝑟𝑟+𝑙𝑙)
∗ (𝑟𝑟 + 𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠2(θ)          (Equ.10) 

 
𝑎𝑎1(𝑡𝑡𝑡𝑡𝑡𝑡) = 𝜓𝜓 𝑉𝑉2

(𝑟𝑟+𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠2(θ)
(𝑟𝑟 + 𝑙𝑙)         (Equ.11) 

 
Equ.11 is the equation about a1(top) and V2 for the top cross-sectional area of the top, even though we can 

choose any value for l. So the integration is needed to get the equation for the entire top: 
𝑎𝑎1 = ∫ 𝑎𝑎1(𝑡𝑡𝑡𝑡𝑡𝑡)

𝑙𝑙
0 = 𝜓𝜓 𝑉𝑉2

(𝑟𝑟+𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠2(θ)∫ (𝑟𝑟 + 𝑙𝑙)𝑑𝑑𝑙𝑙𝑙𝑙
0        (Equ.12) 

 
𝑎𝑎1 = 𝜓𝜓 𝑉𝑉2 𝑙𝑙(𝑟𝑟+0.5𝑙𝑙)

(𝑟𝑟+𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠2(θ)
                (Equ.13) 

 
Then, the kinetic energy in the falling direction of the top falling from rest can be got: 

0.5𝑚𝑚𝑉𝑉12 = 𝑚𝑚∫(𝑔𝑔 ∗ sin(θ) − 𝑎𝑎1)𝑑𝑑𝑠𝑠     (Equ.14) 
 

In Equ.14, s is the real distance the top moves, θ is the function related to s or h, and V1 is the velocity in 
the falling direction. But for better calculation, the equation likes (0.5mv2=mgh) will be used instead of Equ.14. In 
the other words, 𝑑𝑑𝑠𝑠 = 𝑑𝑑ℎ/sin (𝜃𝜃), so Equ.14 will be converted: 

0.5𝑚𝑚𝑉𝑉12 = 𝑚𝑚∫�𝑔𝑔 − 𝜓𝜓 𝑉𝑉2 𝑙𝑙(𝑟𝑟+0.5𝑙𝑙)
(𝑟𝑟+𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠3(θ(h))

� 𝑑𝑑ℎ     (Equ.15) 

 
Where h is the vertical height that the top passes.  
 

 
Figure 4 
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Fig.4 above shows the trajectory of the top falling from rest. As shown in Fig.4, 𝑉𝑉2 = cos(θ𝑎𝑎)�2𝑔𝑔ℎ . Fur-
thermore, 𝑉𝑉32 = 2𝑔𝑔ℎ, but for 𝑉𝑉12, g is a function 𝑔𝑔 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠2(θ𝑎𝑎) instead of constant, so  𝑉𝑉12 = 2∫(𝑔𝑔 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠2(θ𝑎𝑎))𝑑𝑑ℎ 

Therefore, Equ.15 can be replaced and simplified, and another thing is that θ(h) can be replaced by ∆θ +
θ0 : 

0.5𝑚𝑚 ∗ 2∫(𝑔𝑔 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠2(θ𝑎𝑎))𝑑𝑑ℎ = 𝑚𝑚∫�𝑔𝑔 − 𝜓𝜓 𝑙𝑙(𝑟𝑟+0.5𝑙𝑙) cos(θ𝑎𝑎)�2𝑔𝑔ℎ
(𝑟𝑟+𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠3(θ(h))

�𝑑𝑑ℎ      (Equ.16) 

 

cos (θ𝑎𝑎) = 𝜓𝜓 𝑙𝑙(𝑟𝑟+0.5𝑙𝑙)�2𝑔𝑔ℎ
𝑔𝑔(𝑟𝑟+𝑑𝑑)𝑠𝑠𝑠𝑠𝑠𝑠3(∆θ+θ0)

         (Equ.17) 

 
 Substituting Equ.2 into Equ.17 and simplifying: 

θ𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑠𝑠−1 � 𝜓𝜓 𝑙𝑙(𝑟𝑟+0.5𝑙𝑙)�2𝑔𝑔ℎ

𝑔𝑔(𝑑𝑑+𝑟𝑟)�1−� ℎ
𝑑𝑑+𝑟𝑟−cos (θ0)�

2
�
3/2�        (Equ.18) 

 
 or 

θ𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 � 𝜓𝜓 𝑙𝑙(𝑟𝑟+0.5𝑙𝑙)�2𝑔𝑔ℎ

𝑔𝑔(𝑑𝑑+𝑟𝑟)�1−� ℎ
𝑑𝑑+𝑟𝑟−cos (θ0)�

2
�
3/2�        (Equ.19) 

 
The graph drawn by Equ.18 has three trajectories of θα basically, and it was found that the initial 

angle θ0 has a great influence on the trajectory of the top. In addition, θ0 can be assumed from 0 to 0.5π: 
1. If θ0 is relatively large, a graph similar to a steep hill will appear. This case is shown in 

Fig.5(a). Also, this case will appear if θ0 is larger than 0.5 π. 
2. When θ0 is relatively medium, θα will first drop sharply and then rise suddenly, forming a 

sharp point, and then drop to zero again. As shown in Fig.5(b). 
3. If θ0 is relatively small, θα will also decrease sharply first until it reaches the horizontal axis. 

The graph rises again after a certain distance and then drops to zero again, forming a U-like 
shape. 
 

   
Fig.5(a)      Fig.5(b) 
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Fig.5(c) 

Of course, other initial conditions also have an influence on the trajectory of the top. And the 
reason I chose Equ.18 to create Fig.5 is that it is more intuitive. 

Since θα has three trajectories, the top also has three distinct cases. The motion orbit of the top 
can be generated by integrating tan(Equ.19) on the website Desmos Graphing Calculator. Furthermore, 
Fig.5(a), Fig.5(b), and Fig.5(c) correspond to Fig.6(a), Fig.6(b) and Fig.6(c), respectively. 

 

   
Fig.6(a)       Fig.6(b) 

 
The blue trajectories of Fig.6 are generated by Desmos website, because the laws of movement are not af-

fected by space and time in the inertia reference frame, so the subsequent orbits (the red trajectories) can be inferred. 
Since Fig.5(c) exceeds the limit from a mathematical standpoint, so the Desmos website cannot generate 

the integration in this case. But it can be seen from Fig.5(c) that θα decreases sharply from 0.5 π to 0, and there is 
still a decreasing trend. This means that the top will spin in a small circle to return to the starting point. That is to 
say, from the perspective of coordinate system in Fig.6, the top will spin in a very small circle and return to the 
origin, and continue to move in the negative direction of x-axis (or Precession axis) and downward. After a small 
distance on h-axis in Fig.5(c), the angle appears again, but it turns out that it is impossible that the angle reappears as 
0 degree. Therefore, to obtain the same value of the cos function, θα can be 0 or ±2π. Since θα starts at π/2 and is ini-
tially downward in the negative direction, so it can be assumed that θα reappears as -2π, that means θα just finishes a 
circle and the true angle of θα at that point is π/2-2π, or π/2. 

After θα reappears, it continues to rise, that is, θα becomes π/2-(2π+x), which eventually causes θα to be-
come smaller. After the graph line of Fig.5(c) reaches its vertex, it will drop again and reaches 0 degree. If this part 
still represents π/2-(2π+x), then in the end it will become π/2 again, which is incorrect. So the part of the graph line 
of Fig.5(c) after it touches the vertex should represent the true angle of θα, Instead of π/2-(2π+x). 
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Based on the above analysis, the following figure can be obtained. 
 

 
Fig.6(c) 

 
In addition to the initial angle θ0, the angular speed ψ also has a great influence on the trajectories of the 

top:  
1. From Fig.6(a) generated from the Desmos website, it can be seen that for the blue part of a-trajectory 

(the trajectory shown in Fig.6(a)), the higher the ψ, the smaller the range of h-axis and Precession-axis, 
which indicates that the amplitudes of the nutation and precession become smaller with increasing ψ. 

2. However, the b-trajectory has a different case compared with a-trajectory, From the Fig.5(b) and 
Fig.6(b) generated from the Desmos website, it can be seen that as ψ increases, the range of h-axis be-
comes smaller, but the range of Procession-axis becomes larger. Furthermore, b-trajectory has a ten-
dency to transform into the c-trajectory. 

3. The c-trajectory is special as well. From Fig.5(c) generated by the Desmos website, it can be seen that 
as ψ is increased, the range of h-axis and the size of the semicircle-like shape become increasingly 
small, and the interval between the origin and the semicircle becomes larger as well. Until the semicir-
cle disappears. It seems that c-trajectory will jump into the steady precession under certain conditions. 

To obtain the initial conditions leading to the three trajectories, dθα/dh can be used. 
For a-trajectory, condition 𝑑𝑑𝜃𝜃𝑎𝑎

𝑑𝑑ℎ
≤ 0 must be met, so that, Equ.20 can be obtain: 

 
6ℎ[ ℎ

𝑑𝑑+𝑟𝑟−cos(θ0)]

(𝑑𝑑+𝑟𝑟)�1−� ℎ
𝑑𝑑+𝑟𝑟−cos(θ0)�

2
�
≥ −1             (Equ.20) 

 
Since Equ.20 is a concave up function, so d2θα/dh2 can be used to determine the position of minimum ver-

tex of Equ.20. After calculating, there is only one positive root of d2θα/dh2, h=(d+r)tan(θ0)*[1-sin(θ0)]. Then substi-
tute this solution into Equ.20: 

−6sin (θ0)�sin(θ0)−1
cos (θ0) �

2

1−�sin(θ0)−1
cos (θ0) �

2 ≥ −1         (Equ.21) 

 
It can be known that from Equ.21, a-trajectory is determined only by θ0. 
Furthermore, Equ.22, a part of dθα/dh, must be satisfied to prevent c-trajectory: 

𝜓𝜓2𝑙𝑙2(𝑟𝑟+0.5𝑙𝑙)22ℎ

𝑔𝑔(𝑑𝑑+𝑟𝑟)2�1−� ℎ
𝑑𝑑+𝑟𝑟−cos (θ0)�

2
�
3 < 1                 (Equ.22) 
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Differentiating Equ.22 with respect to h, to obtain the vertex position of Equ.22, and then substitute it into 
Equ.22: 

𝜓𝜓2𝑙𝑙2(𝑟𝑟+0.5𝑙𝑙)2∗25�2 cos(θ0)−�92cos(2θ0)−12�

𝑔𝑔(𝑑𝑑+𝑟𝑟)∗

⎩
⎨

⎧
1−�

2cos(θ0)−�92cos(2θ0)−12
5 −cos (θ0)�

2

⎭
⎬

⎫
3 < 1            (Equ.23) 

 
It is evident that �9

2
cos(2θ0) − 1

2
� must be equal or greater than 0, so that Equ.24 is obtained: 

θ0 ≥
1
2
𝑐𝑐𝑐𝑐𝑠𝑠−1(1

9
)              (Equ.24) 

 
And if �1

2
𝑐𝑐𝑐𝑐𝑠𝑠−1(1

9
)� substituted into Equ.21, the equation will be -1, which means the a-trajectory will occur 

if Equ.24 isn’t satisfied. 
 

Discussion 
 
The above analysis only uses Vα, but it seems that Vβ can also prevent the top from falling in some degree due to the 
gravity, because Vβ is opposite to the direction of gravity. However, based on the analysis above, nutation is caused 
by precession taking away the kinetic energy of the falling top. And the resultant velocity of the gyroscope’s linear 
velocity and Vβ will only appear in the vertical plane parallel to the direction of gravity, while when viewed on the 
horizontal plane, the resultant velocity is consistent with the linear velocity. That is to say Vβ would not transfer ki-
netic energy to the horizontal plane and has no effect on precession, so Vβ would not affect the motion of the top. 
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