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ABSTRACT 
 
Agrobacterium tumefaciens is a gram-negative bacterium of the family Rhizobiaceae and is known for its pathogenic 
ability to induce a neoplastic response in over 100 different species of plants, often leading to significant decline in 
individual plant health. The mechanism by which tumors are induced includes a segment of DNA contained within 
the bacterium’s Ti plasmid which is integrated in the host genome. The T-DNA is oncogenic, encoding enzymes that 
increase the production of certain plant hormones ultimately leading to tumor formation. The impressive ability of T-
DNA to integrate into plant genomes has led to its use as a common method of genetic transformation in plants. While 
it has been documented that the T-DNA insertion occurs at double strand breaks, the mechanism of insertion still 
remains elusive. Currently, the point at which the T-DNA is inserted in the host genome is believed to be somewhat 
random with respect to the surrounding sequences, and uncontrolled multiple insertion sites appear to be a common 
phenomenon. In this study, we utilized machine learning algorithms to assess the nucleotide sequences that are im-
portant in integration of Ti plasmid into the host genome. Various machine learning algorithms have yielded high-
accuracy models provided the sequence data alone. 
 

Introduction 
 
Agrobacterium tumefaciens is a gram-negative, soil microbe and belongs to the family Rhizobiaceae and is known for 
its pathogenicity to induce tumor formation in a wide variety of plant species (Necrela, et. al., 2021). The bacterium 
contains a tumor inducing (Ti) plasmid that is essential for delivery of the pathogen into the host genome which 
transforms normal plant cells into autonomous tumor cells leading to crown gall disease (Gelvin 1990). The essential 
regions of the Ti plasmid include six major operons Vir A, VirB, Vir C, VirD, VirE and VirG encoding for virulence 
genes; and the transfer DNA region, a section of the Ti plasmid that is transferred via conjugation into host plant cells 
(Necrela, et. al., 2021). The molecular events by which Ti plasmid is integrated into the host genome still remain 
elusive. Agrobacterium tumefaciens is an efficient DNA delivery system for production of biomedically important 
macromolecules and therapeutics (Ramessur et al., 2018). Agrobacterium has been utilized to successfully engineer 
vaccine production in bananas and tomatoes (Gelvin, 2003). Unraveling the mechanism of DNA integration is quite 
appealing particularly for the developing world where access to vaccines are financially challenging. 

The mechanism by which agrobacterium induces tumor formation begins with the Ti plasmid. Virulence 
proteins coded by Agrobacterium are involved in processing the T-DNA as well as shuttling it into the plant cell via 
a type-IV secretion system (Nester 2015; Zhang et al., 2017). Although the mechanism by which T-DNA is directly 
integrated into the host genome is not well-understood, it is plausible that virulence protein VirD2 chaperones the T-
DNA to the site of insertion (Ziemienowicz, et al., 2000). Ziemienowicz et al. also demonstrated that plant extracts 
contain a ligase activity that leads to integration in varied sequence contexts suggesting that the host’s genetic ma-
chinery is utilized to carry the integration. Because of the association between double-strand DNA breaks in host DNA 
and integration, it appears that the host’s DNA repair machinery is involved in integration, though the exact mecha-
nisms remain elusive (Kohler, et al., 1989, Gelvin 2021). 
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As the technology used to make scientific measurements becomes increasingly sophisticated, the datasets 
generated by these instruments become exceedingly large and complex (Nichols et al., 2019; Choi et al., 2020). Thus, 
new methods are needed to resolve this complexity in order to draw interpretable conclusions from said data (Janiesch 
et al., 2021). The term “machine learning” (ML) is used to describe a set of statistical/computational methods that can 
be used in order to make sense of big, seemingly messy data (Monaco et al., 2021). There are many different ML 
methods which concentrate on the prediction of a certain variable from a set of other variables with known values. 
The variable to be predicted is known as a “label”, the “output”, or the “y” and the variables used to predict the label 
are known as “features”, “inputs”, or “X” s (Kursh 2021).  

In some datasets, the label has known values. In this case, the goal of ML is to find the relationship between 
the inputs and the output. This is called supervised learning and can be further broken down into two different types 
of tasks: classification and regression (Liu et al., 2012). Classification is used when the output can be sorted into one 
of multiple discrete categories (Kotsiantis 2007). In this study, we utilized classifiers in order to distinguish between 
sequences in which there is an adjacent insertion and ones in which there is not. Regression is used when the output 
is a continuous or quantitative variable. In both methods, a ML technique is used to generate an equation that relates 
the inputs to the known outputs in some way. After generating this equation, a new set of inputs can be plugged into 
the equation and an output is generated (Badillo et. al., 2020).  

In this study, ML techniques were utilized to infer the labels based on similarities in features between obser-
vations, known as supervised learning. Typically, observations are sorted into groups based on their similarities and 
then assigned a label from a predetermined set of labels based on qualities of their group (Monaco, et. al., 2021).  
 

Methods 
 
Data Retrieval and Processing 
 
Sequences flanking T-DNA insertions in Arabidopsis thaliana were retrieved from GenBank and were also obtained 
from a variety of previously performed studies (Ortega et al., 2002, Samson et al., 2002, Brunaud et al., 2002, Li et 
al., 2006). All of these sequences and all code used for this project are available at our Github at: 
https://github.com/sawyer-smith/tdna-insertion. Sequences ranged from approximately 100-800 bases long and were 
labeled as flanking the insertion on either the “right” or “left” border. Because these regions were sequences as part 
of insertional mutagenesis studies, they exclusively belong to coding regions of the Arabidopsis genome. 

Sequences were exported from GenBank in the “GenBank (Full)” file format, and the resulting files were 
scraped for the relevant information. Due to the differences in how sequences were annotated between studies, similar 
but customized scraping algorithms were implemented in Python depending on how the information was organized. 
Essentially, the algorithms generated a Python list for each sequence containing two items: one was a string indicating 
whether the sequence flanked the insertion on the right or the left (i.e., “R” or “L”) and the other was the sequence 
itself reformatted as a list, where each nucleotide is a single item. 

These single sequence lists were then compiled into two larger lists. One of these lists included all of the 
right border sequences, and the other included all of the left border sequences (Figure 1). Sequences with no insertion 
were then randomly taken from the Arabidopsis genome and added to each list, with each final list containing equal 
numbers of insertion sequences and non-insertion sequences. It was verified that there were no repeat sequences in 
the final complete list of sequences. Before transferring to a Pandas DataFrame, each flanking sequence was labeled 
with a 1, and each non-flanking sequence was labeled with a 0 in order to facilitate classification using machine 
learning. The final set of left-border sequences plus non-insertion cases contained 488 sequences. The final set of 
right-border sequences plus non-insertion sequences contained 314 sequences (Figure 1). 
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Figure 1. Sequences flanking sites of T-DNA insertion in Arabidopsis thaliana were retrieved from GenBank Nucle-
otide, originating from several studies. The sequences were then shortened and sorted into lists of right and left flank-
ing sequences. Sequences of no insertion were taken from the A. thaliana genome and added to the previously gener-
ated lists. No-insertion cases were added such that the distributions of GC content between insertion and no-insertion 
cases were not significantly different. 
 

The sequences that flanked insertions were all taken from regions of coding DNA, whereas the others were 
taken from random positions on the genome. In order to make sure that sequences were being discriminated against 
based on a putative quality that informed insertion, and not based on GC content, the distributions of GC content of 
insert and non-insert samples were measured and compared using a Mann-Whitney U test (Figure 2). 

Volume 13 Issue 3 (2024) 

ISSN: 2167-1907 www.JSR.org 3



 
Figure 2. The distribution of GC content of insert and non-insert samples measured and compared using Mann-Whit-
ney U Test. 

 
One-Hot Encoding 
 
Additionally, since machine learning models are not designed to handle qualitative data, sequences needed to be en-
coded before ML models could be fit to the data. One-hot encoding was used to make the data palatable for the ML 
models (Dahouda et al., 2021). One-hot encoding involves expanding each feature into a number of “dummy varia-
bles” based on the number of different possible values for the qualitative variable. In this case, since there are four 
possible values (a, g, c, and t) for each feature, each feature was expanded into four variables. Each of the four dummy 
variables denotes whether or not the original feature’s value is a specific value out of the four possible values. Say 
that the first dummy variable denotes whether the original feature value is “a”, the second denotes whether it is “g”, 
the third denotes “c”, and the fourth denotes “t”. A one would be assigned to the dummy variable with the original 
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feature value, whereas zeros would be assigned to the other dummy variables. If the original feature value was “c”, 
for example, the respective values of the dummy variables would be 0, 0, 1, 0. 
 
Machine Learning Models 
 
All machine learning algorithms were implemented using libraries in Python. Various methods of binary classification 
were used, including logistic regression, decision trees, support vector machines (SVM), multi-layer perceptron 
(MLP), and convolutional neural networks (CNN). The code used for each method can be found on our GitHub.  
Logistic regression, decision trees, SVM, and MLP were implemented using Sci-Kit learn, a popular machine learning 
library in python (CITE). CNN was implemented using python libraries TensorFlow and Keras. All models were 
optimized using Gridsearch algorithms with cross validation. 
 
Model Evaluation 
 
Various methods were used for model evaluation. Accuracy was often used to evaluate both training and testing of 
models because classes were exactly balanced. That is, there were equal amounts of insertion cases and no-insertion 
cases. Similarly, receiver operating characteristic curves (ROC) were used. ROC curves plot the false positive rate 
against the false negative rate at different decision thresholds. The area under the curve (AUC) is used as a metric of 
success in prediction. 
  
Feature Importance Analysis 
 
Feature importance analysis is a method by which one can determine which features contribute the most to the accu-
racy of a ML model. This is done by taking all of the data from the feature of interest and randomly permuting it, so 
that each sample is randomly assigned a new value for that feature. Feature importance analysis was carried out using 
the model with the best performance as determined by testing accuracy and the AUC when plotted on a receiver 
operating characteristic (ROC) curve.  

Since most pre-written feature importance analysis algorithms are not designed to handle data that has been 
encoded using one-hot encoding, custom algorithms were used to carry out the analysis. Essentially, the algorithm 
establishes a baseline accuracy by training an optimized model on non-permuted, encoded training data and then 
finding the testing accuracy of the model. Then, the algorithm iterates through the non-encoded training data, permutes 
one feature at a time, encoding the training data and fitting the ML model for each feature that gets permuted. In each 
iteration, the trained model is then used to make predictions based on encoded testing data, and the accuracy of those 
predictions (known as the model’s testing accuracy) is subtracted from the baseline accuracy in order to determine the 
importance of the permuted feature. The train/test split is preserved for each time the model is fit so that the model is 
being evaluated based on the same testing data each time. 
 

Results 
 
Various types of ML modes can be trained to predict insertion based on left-flanking sequences 
Models trained on data from sequences on the left flank of T-DNA insertions were able to achieve high training 
accuracies across statistical treatments (Figure 3). The support vector classifier (SVC) was particularly accurate after 
optimization, achieving an AUC of 0.96.  
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Figure 3. ROC curves were generated using testing data with previously trained ML models. The SVC models attained 
the greatest area under the curve, indicating high testing performance. 
 
 
Various types of ML modes can be trained to predict insertion based on right-flanking sequences 
 
The models trained on data from sequences on the right flank of T-DNA insertion also yielded high accuracies, some-
what higher even than those trained on the left flank sequences. As indicated in Figure 3, the SVC was once again the 
most accurate type of model trained on this data. 
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ML models also achieve high testing accuracies 
 
In order to determine whether the models’ performance was simply based on overfitting, testing accuracy of each 
model was determined. Given the previously unseen data, models yielded consistently high accuracies. As demon-
strated in Figure 4, the SVC yielded the best accuracies in both models trained by left flank sequences or right flank 
sequences. Additionally, confusion matrices were generated for each model to determine whether models were per-
forming poorly at predicting certain classes (insertion or no insertion) (Figure 5). 
 

 
 
Figure 4. Comparison of accuracy between models when tested on unseen data. All three models yielded high accu-
racy. SVC appeared to achieve the highest testing accuracy. 
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Figure 6.  Confusion matrices for each of the different types of machine learning models trained on right and left flank 
data. Values for each of the categories were normalized to the total number of samples used for testing. In each case, 
the models’ prediction of insertion tended to line up with the actual insertion status of the sample (true positives and 
true negatives were more common than false positives and false negatives). 
 
Permutation analysis does not show any particular regions of interest 
 
When doing permutation analysis, it was expected that there may be certain regions of the sequence where the posi-
tions in that region tended to have higher importance, or that positions closer to the insertion would have higher 

Volume 13 Issue 3 (2024) 

ISSN: 2167-1907 www.JSR.org 8



importance than those that are farther away. However, the importance of each feature did not appear to follow any 
particular pattern in terms of their position on the sequence. This was true for the models trained on the left flanking 
sequences as well as those trained on the right flanking sequences (Figure 5). 
 

 
Figure 6. Figure importance analysis using the SVC models trained on the left and right flank data. The analysis did 
not reveal any particular regions in the flanking sequences that were more or less predictive of insertion.  
 

Discussion 
 
Across the board ML models performed well when predicting insertion based only on sequence data. This data was 
robust for predicting insertion using varied statistical treatments. This is interesting considering previous studies which 
have suggested that insertion is not sequence dependent. However, given the small and somewhat limited dataset, it 
is plausible that the models’ accuracy can be somewhat attributed to overfitting, or perhaps the models were distin-
guishing between insertion and non-insertion cases based on properties which are not inherent to all cases of insertion. 
Especially concerning is the lack of insertion cases originating from non-coding DNA. One way that this possibility 
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was combated was by controlling for the distribution of GC content in non-insertion cases, but perhaps other qualities 
of non-coding DNA confounded the model-generation process. 

Carrying out feature importance analysis on these data using the optimized models demonstrated that there 
were not any particular regions of the sequences that were especially consequential to determining whether an insertion 
would take place. One might expect that, for example, positions nearest to the insertion would have the most im-
portance in determining model accuracy, but no such pattern was present in this data. This could mean that these 
models are overfit to this data, or that patterns determining insertion at the sequence level are more complex. 

Though the model that was trained performed well for various traditional machine learning benchmarks, 
biological phenomena are highly complex and multifactorial. Sequence data alone may be able to explain some inser-
tion cases but probably does not capture the full extent of features that control the probability of insertion. Therefore, 
there are other types of data that may be helpful in generating a more accurate and representative model. One type of 
data that would be particularly helpful is chromatin accessibility. It is thought that the insertion of T-DNA is connected 
to the presence of double-strand breaks in the host genome. 

Using data from sequences flanking insertions of T-DNA as well as sequences not flanking insertions in 
Arabidopsis thaliana, accurate classifiers were generated. These classifiers not only performed well on classifying 
training data, but also on classifying testing data after being trained. Though these models performed well, there are 
certainly other types of data that could be used for training the models that may make them more generally accurate 
and better reflect the intricacies of T-DNA insertion. 
 

References 
 
Badillo, S., Banfai, B., Birzele, F., Davydov, I. I., Hutchinson, L., Kam-Thong, T., Siebourg, Polster, J., Steiert, B., 

& Zhang, J. D. (2020). An Introduction to Machine Learning. Clinical pharmacology and therapeutics, 
107(4), 871–885. DOI: 10.1002/cpt.1796  

Brunaud, V., Balzergue, S., Dubreucq, B., Aubourg, S., Samson, F., Chauvin, S., Bechtold, N., Cruaud, C., Derose, 
R., Pelletier, G., Lepiniec, L., Caboche, M., & Lecharny, A. (2002). T‐DNA integration into the 
Arabidopsis genome depends on sequences of pre‐insertion sites. EMBO Reports, 3(12), 1152–1157. DOI: 
10.1093/embo-reports/kvf237 

Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. C. (2020). Introduction to Machine 
Learning, Neural Networks, and Deep Learning. Translational Vision Science & Technology, 9(2), 14. 
DOI: 10.1167/tvst.9.2.14 

Dahouda, M. K., & Joe, I. (2021). A deep-learned embedding technique for categorical features encoding. IEEE 
Access, 9, 114381–114391. DOI:10.1109/ACCESS.2021.3104357 

Gelvin, S. B. (1990). Crown Gall Disease and Hairy Root Disease. Plant Physiology, 92(2), 281–285. DOI: 
10.1104/pp.92.2.281 

Gelvin, S. B. (2003). Agrobacterium-Mediated Plant Transformation: the Biology behind the “Gene-Jockeying” 
Tool. Microbiology and Molecular Biology Reviews, 67(1), 16–37. DOI: 10.1128/MMBR.67.1.16-37.2003 

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 
685–695. DOI: https://doi.org/10.1007/s12525-021-00475-2 

Kohler, F., Cardon, G., Pöhlman, M., Gill, R., Schieder, O. (1989). Enhancement of transformation rates in higher 
plants by low-dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA 
into the plant genome? Plant Mol Biol 12, 189–199. DOI: 10.1007/BF00020504 

Kotsiantis, S. (2007). Supervised Machine Learning: A Review of Classification Techniques. Informatica 
(Lithuanian Academy of Sciences), 31(3), 249–268.  

Kursh, S. (2021). An Introduction to the “How To” for AI and Machine Learning. Business Education Innovation 
Journal, 13(2), 14–23. 

Volume 13 Issue 3 (2024) 

ISSN: 2167-1907 www.JSR.org 10



Lapham Rachelle A., Lan-Ying, L., Eder, X., Esteban Ganan, G., Nivya, V. M., Gelvin Stanton, B. (2021). 
Agrobacterium VirE2 Protein Modulates Plant Gene Expression and Mediates Transformation From Its 
Location Outside the Nucleus, Frontiers in Plant. DOI: https://doi.org/10.3389/fpls.2021.684192 

Li, Y., Rosso, M. G., Ülker, B., & Weisshaar, B. (2006). Analysis of T-DNA insertion site distribution patterns in 
Arabidopsis thaliana reveals special features of genes without insertions. Genomics, 87(5), 645–652. DOI: 
https://doi.org/10.1016/j.ygeno.2005.12.010 

Liu, Q., & Wu, Y. (2012). Supervised Learning. In Springer eBooks (pp. 3243–3245). 
Malik, H., Chaudhary, G., & Srivastava, S. (2022). Digital transformation through advances in artificial intelligence 

and machine learning. Journal of Intelligent & Fuzzy Systems, 42(2), 615–622.  
Monaco, A., Pantaleo, E., Amoroso, N., Lacalamita, A., Lo Giudice, C., Fonzino, A., Fosso, B., Picardi, E., 

Tangaro, S., Pesole, G., & Bellotti, R. (2021). A primer on machine learning techniques for genomic 
applications. Computational and Structural Biotechnology Journal, 19, 4345–4359. DOI: 
10.1016/j.csbj.2021.07.021 

Nachar, N. (2008). The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the 
Same Distribution. Tutorials in Quantitative Methods for Psychology, 4(1), 13–20. DOI: 
10.20982/tqmp.04.1.p013 

Necreală, M., Rotaru, A., Chifan, R., Carabet, A., & Ştef, R. (2021). Evaluation of Bacterial Pathogen 
Agrobacterium Tumefaciens Attack on some Apple Varieties. Research Journal of Agricultural Science, 
53(4), 141–148. 

Nester, Eugene W. “Agrobacterium: Nature’s Genetic Engineer.” Frontiers in Plant Science, vol. 5, 2015. DOI: 
10.3389/fpls.2014.00730 

Nichols, J. D., Chan, H., & Baker, M. J. (2019). Machine learning: applications of artificial intelligence to imaging 
and diagnosis. Biophysical Reviews, 11(1), 111–118. DOI: 10.1007/s12551-018-0449-9 

Ortega, D., Raynal, M., Laudié, M., Llauro, C., Cooke, R., Devic, M., Genestier, S., Picard, G., Abad, P., Contard, 
P., Sarrobert, C., Nussaume, L., Bechtold, N., Horlow, C., Pelletier, G., & Delseny, M. (2002). Flanking 
sequence tags in Arabidopsis thaliana T-DNA insertion lines: a pilot study. Comptes rendus biologies, 
325(7), 773–780. DOI: https://doi.org/10.1016/s1631-0691(02)01490-7 

Ramessur, A. D., Bothwell, J. H. F., Maggs, C. A., Gan, S. Y., & Phang, S. (2018). Agrobacterium-mediated gene 
delivery and transient expression in the red macroalga Chondrus crispus. Botanica Marina, 61(5), 499–510. 
DOI: https://doi.org/10.1515/bot-2018-0028 

Samson, F., Brunaud, V., Balzergue, S., Dubreucq, B., Lepiniec, L., Pelletier, G., Caboche, M., & Lecharny, A. 
(2002). FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-
DNA transformants. Nucleic Acids Research, 30(1), 94–97. DOI: 10.1093/nar/30.1.94 

Van Breukelen, G. (2010). Mann–Whitney U Test. Encyclopedia of Research Design. SAGE Publications, Inc. 
eBooks. DOI: https://doi.org/10.4135/9781412961288 

Zhang, X., Van Heusden, G. P. H., & Hooykaas, P. J. J. (2017). Virulence protein VirD5 of Agrobacterium 
tumefaciens binds to kinetochores in host cells via an interaction with Spt4. Proceedings of the National 
Academy of Sciences of the United States of America, 114(38), 10238–10243. DOI: 
10.1073/pnas.1706166114 

Ziemienowicz, A., Tinland, B., Bryant, J., Gloeckler, V., & Hohn, B. (2000). Plant enzymes but not Agrobacterium 
VirD2 mediate T-DNA ligation in vitro. Molecular and cellular biology, 20(17), 6317–6322. DOI: 
10.1128/MCB.20.17.6317-6322.2000 

Volume 13 Issue 3 (2024) 

ISSN: 2167-1907 www.JSR.org 11

https://doi.org/10.1016/s1631-0691(02)01490-7



