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ABSTRACT 

The most important battle in baseball is the battle between the pitcher and the batter, as hitting the baseball hard and 
far will drastically change the outcome of a game. In this research, we are attempting to build the strategic swinging 
model that can help Major League Baseball (MLB) hitters decide whether they should swing at a pitch before it has 
been thrown. We used random forest classifiers to output a probabilistic prediction of pitch type and pitch location, 
and estimated how well the hitter would like the pitch based on his past batting data. We evaluated the model by 
calculating how much better it performed compared to the scenario in which the batter did the opposite. The model 
outperformed any random swinging strategy. However, the decisions of most above average hitters are better than the 
model's decisions. 

Introduction 

Baseball has always been a world of statistics. It is an individualistic sport, in which the center of the battle is the 
battle between two players: the pitcher and the batter. It is also a relatively static sport, compared to other sports such 
as football, which involves 22 players moving on the field at the same time. Therefore, using statistics to measure the 
performance of players and teams has become a very popular choice. The average baseball fan is usually familiar with 
statistics such as Batting Average and On-base Plus Slugging (OPS), which are both measurements of a player’s 
batting ability. For statisticians and professional baseball analysts, more advanced statistics are often considered when 
they try to model the game of baseball.  

Modern baseball statistical analytics has its roots in the 1970s, when the term “sabermetrics” was coined by 
Bill James (Lewis, 2003). “Sabermetrics” means the application of statistical analysis to baseball. Along with the birth 
of sabermetrics came numerous advanced statistics measuring either pitcher or batter performance. For example, On-
base Plus Slugging Plus (OPS+), is a modern statistic that normalizes a player’s OPS against the entire league, taking 
into account external factors such as ballpark dimensions and altitude (Major League Baseball). In addition, Wins 
Above Replacement (WAR) is a statistic created by sabermetricians that directly measures how many additional wins 
that can be attributed to this player, compared to a regular MLB “bench player” (FanGraphs). These advanced statistics 
might be less interpretable, as their method of calculation often seems like a black box to the average baseball fan. 
Nevertheless, they are very crucial pieces of information for baseball analysts to have a deeper understanding of the 
game. 

With the advancement of technology in the 21st century, more baseball data have become available, allowing 
baseball scholars to have a more nuanced understanding of the intricacies of a baseball game. The PITCHf/x system, 
developed by the MLB, tracks the velocity and trajectories of Major League Baseball pitches (Dimeo, 2007). Statcast 
takes it a step further, by also tracking batted ball trajectories, fielder movements, and base-runner movements (Berg, 
2015). 

In this research, with the help of Statcast pitch-level data, we aim at building a quantitative system, the stra-
tegic swinging model, that can inform the batters on whether they should swing at a pitch or not before the pitch has 
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been thrown. Major League pitchers often throw pitches that are over 90 miles per hour, and according to neuroscien-
tist Jason Sherwin, batters only have 0.05 to 0.1 seconds to decide whether they should swing (Cascio 2020). There-
fore, it would be beneficial if there were a system that can help hitters make that decision pre-pitch. Our model is 
based upon two separate machine learning models that predict the type and location of the pitch. After that, we also 
incorporate the batter’s historical data and records to help them decide whether they should swing or not. 

 

Literature Review 
 
A substantial body of research has been dedicated to pitch type prediction in baseball, including the research done by 
Tran and Sidle (2018), in which they utilized multi-class classification models, such as Latent Dirichlet Allocation, 
Support Vector Machines, and classification trees to predict the type of the next pitch. Their models significantly 
outperformed simpler approaches like linear regression (Tran and Sidle, 2018). Similarly, Bock developed both a 
Multinomial Logistic Regression model and a Support Vector Machine model for pitch type prediction. He extended 
his research further by exploring how a pitcher's predictability could influence their Earned Run Average (ERA) 
(Bock, 2015). 

Hoang (2015) introduced a novel approach by proposing a dynamic feature selection procedure for pitch type 
prediction, improving upon previous methods that relied on static feature selection algorithms. Additionally, he em-
ployed parameter optimization techniques to tackle the issue of class imbalance, leading to superior performance 
(Hoang, 2015). Ishii (2021) took a different route by developing a pitch prediction algorithm that focused on the 
pitcher’s physical cues, identifying specific “tips” that might reveal the pitch. Yoshihara and Takahashi (2020) applied 
a probabilistic topic model to analyze pitch sequences, treating each sequence as a topic and each pitch as a word 
within that topic. Probabilistic topic models, such as Latent Dirichlet Allocation (LDA), are generative models that 
assume documents are mixtures of topics, where each topic is characterized by a distribution over words(Pritchard, 
2000). 

Ramos (2017) shifted the focus to predicting the zone of the next pitch. He began by clustering pitches into 
five distinct zones using the Gaussian Mixture Model and then developed a multinomial logistic regression model to 
predict the specific zone where the next pitch would likely land (Ramos, 2017). Lee (2022) used deep neural networks 
to make predictions on pitch type and pitch location at the same time, resulting in 34 different classes). 
Despite the extensive research on pitch type and zone prediction, there has been relatively little focus on utilizing 
these predictions to enhance batters' hitting strategies. Our research builds on these existing studies, aiming to bridge 
this gap by taking the results of pitch type predictions and applying them to help batters refine their swinging strategies. 
Our primary research question is: Can we develop a strategic swinging model that leverages historical data to enhance 
batters' decision-making? Additionally, to what extent, if any, would this new model outperform individual baseball 
players? 
 

Data and Methods 
 
Table 1. Glossary of terms in dataset 
 

Term  Definition 

wOBA Weighted On-Base Average, a statistic measuring how likely that a batted ball will lead to a base 
hit 

exp_woba1 Expected wOBA calculated from pitch type prediction  
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exp_woba2 Expected wOBA calculated from pitch location prediction 

bip_pct1 Expected contact probability calculated from pitch type prediction 

bip_pct2 Expected contact probability calculated from pitch location prediction 

strike_prob Predicted probability that the next pitch is a strike 

cdrv_288 A pitch-level statistics that measures the change in the expected amount of runs that will be scored 
in this inning as a result of a particular pitch. It is calculated by considering all 288 states in a 
baseball game and taking the difference in the average number of runs scored between two states.   

 
All data used in this research is Major League Baseball Statcast data scraped from Baseball Savant. The datasets from 
2019 to 2021 are used for training, and the dataset from 2022 is used for testing. These datasets can be found in the 
supplementary materials. These datasets include every pitch from the respective seasons, and for each pitch, available 
information includes balls, strikes, outs, baserunners, velocity of pitch, location of pitch, pitch type, etc. A brief de-
scription of each term used in our analysis can be found in Table 1. We excluded Spring Training games, because 
these games are of a less competitive nature than other games.   
 

Volume 14 Issue 1 (2025) 

ISSN: 2167-1907 www.JSR.org/hs 3



   
 

   
 

 
 
Figure 1. Flow chart of model 
 

Figure 1 is a demonstration of the flow chart of the model. The first part of our research involves training 
two statistical learning models that can give a probabilistic prediction of the type and location of the next pitch. For 
this part of our work, we built upon the previous works of Sidle and Tran by using some of the features in their research 
as the input features used in our model (Tran and Sidle, 2018). Table 2 gives a list of all the features used in our model. 
Then, we trained two Random Forest Classifiers that will output a probabilistic prediction of pitch type and pitch 
location respectively.  
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Table 2. List of features used in random forest models 
 

Feature Explanation Type of Variable 

inning The inning of the at-bat Categorical 

pitch_number The pitch number for the pitcher Numerical, Discrete 

is_bottom Whether it is the bottom half of the inning Binary 

pa_number The plate appearance number for the game Numerical, Discrete 

score_diff Batting score - Fielding score Numerical, Discrete 

is_lhb Whether the batter is a left-handed batter Binary 

strikes, balls Balls and Strikes Categorical 

b1, b2, b3 Whether there are runners on first, second, or third 
base 

Binary 

previous_speed The speed of the previous pitch Numerical, Continuous 

previous_break The break height of the previous pitch Numerical, Continuous 

Previous 5 pitch 
tendency 

Zone and type tendency of the previous 5 pitches Numerical, Continuous 

Previous 10 pitch 
tendency 

Zone and type tendency of the previous 10 pitches Numerical, Continuous 

Previous 20 pitch 
tendency 

Zone and type tendency of the previous 20 pitches Numerical, Continuous 

Previous 5 pitch 
strike tendency 

Zone and type tendency of the strikes among 
previous 5 pitches 

Numerical, Continuous 

Previous 10 pitch 
strike tendency 

Zone and type tendency of the strikes among 
previous 10 pitches 

Numerical, Continuous 

Previous 20 pitch 
strike tendency 

Zone and type tendency of the strikes among 
previous 20 pitches 

Numerical, Continuous 

 
Random Forest Classifier is a popular ensemble learning method. It is based upon the idea of decision trees. 

Decision trees are used commonly for classification tasks in machine learning. These trees split data into branches 
based on feature values. At each node, a feature is selected that best separates the data into distinct classes, and that 
leads to a final decision at the leaf nodes where classification is made based on the majority class of the data points in 
that branch (Quinlan 1986).  
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In random forest, the algorithm constructs multiple decision trees when training by selecting a random subset 
of the original training set as the training data each time, and eventually outputs the class selected by the most number 
of trees (Ho, 1995). The algorithm is less vulnerable to overfitting than simple decision trees (Hastie, Tibshirani, & 
Friedman, 2009).  

Table 2 shows the features used in our random forest implementation and a brief description of each. When 
classifying pitch types, we clustered all different pitch types thrown by Major League pitchers into seven types: Fast-
ball(FF), Cutter(FC), Sinker(SI), Slider(SL), Changeup(CH), Curve(CU), and Knuckleball(KN). As for pitch location 
classification, we kept the way that MLB divides the strike zone, with numbers 1 to 9 indicating different spots that 
are strikes and numbers 11 to 14 locating different spots out of the strike zone. In addition, we excluded pitchers who 
threw less than 100 pitches from the 2019 season to the 2021 season. 

Once we have the probabilistic output from these two random forest classifiers, we turn our attention to the 
data from the 2022 season. Figure 2 demonstrates the evaluation method for our model. For each pitch, we compute 
five different statistics: exp_woba1, exp_woba2, bip_pct1, bip_pct2, and strike_prob. The first four statistics are cal-
culated by taking a weighted average of the statistics of each player from the 2019 to 2021 seasons. Similarly, batters 
who have seen less than 100 pitches from the 2019 season to the 2021 season are excluded.  

Finally, we can make the decision to swing or not based on the condition of different variables. If 
exp_woba1>0.33, exp_woba2>0.32, bip_pct1>0.37, bip_pct2>0.32, and strike_prob>0.45, the model will instruct the 
batter to swing. Alternatively, if there are already two strikes and the probability of a strike is high enough—in this 
case being higher than 0.5—the model will also instruct the batter to swing.   
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Figure 2. Flow chart of evaluation method 
 

In order to evaluate our model, we first divided every pitch in the 2022 season into two groups: those where 
the batter swung and those where the batter did not. We consider the statistic cdrv_288 when evaluating the model. In 
both categories, we calculated a hypothetical cdrv_288 value, which is the cdrv_288 value for the hypothetical sce-
nario in which the batter did the opposite of what he chose to do. For example, if the batter swung at the pitch, then 
we need the cdrv_288 score for the case where he did not. This can be directly computed, as we can directly infer 
what would happen if the batter did not swing. However, for the case where the batter did not swing, we trained a 
random forest regressor to predict the hypothetical cdrv_288 value for the hypothetical case where he did.  

Finally, we evaluated how well the model did. If the model’s instructions align with the batter’s decision, we 
subtracted the hypothetical value against the real value, as in this case, the more positive the difference, the better our 
model did. If the model’s instructions did not align with the batter’s decision, we do the opposite. In this case, the 
more negative the difference, the better our model performed. All this is completed at a pitch-by-pitch level before we 
calculate the overall average score of the model. 
 
 
 

Volume 14 Issue 1 (2025) 

ISSN: 2167-1907 www.JSR.org/hs 7



   
 

   
 

Results 
 
The ‘average score’ presented here in Table 3 is calculated by taking the average of the individual scores (as discussed 
in the previous section) across all pitches from the 2022 season. 
 
Table 3. Average score of the model 
 

Average Score When Batter Swung Average Score When Batter Did Not 
Swing 

Overall Average Score 

-0.0005 0.025 0.0127 

 
Overall, the model has a positive average score of 0.0127. However, once we reduce the results into two 

groups, the average score of the model is significantly higher for the cases where the batter did not swing than for the 
cases where he did. The former score is at 0.0249, while the latter one is a slight negative number at -0.005. As we 
will later see, on average the players outperform the model. Since the model is conservative by nature—it only in-
structs players to swing about 21% of the time—the model and the batter are more likely to align for the cases where 
the batter did not swing. Therefore, the model’s score will be closer to the batter’s score when the batter did not swing 
than when the batter swung. Therefore, the score for the former case is higher than the score for the latter case. 
 

 
 
Figure 3. Density plot of the average score of 1,000 random swinging strategies 
 

Figure 3 shows the distribution of the average score of 1,000 random swinging strategies. These strategies 
are randomly resampled from the strategic swinging model. The proportion of times in which the model determines 
that the batter should swing is kept the same throughout the resampling process. The average score of these random 
swinging strategies ranges from around 0.005 to around 0.007, which are all significantly lower than the average score 
of the strategic swinging model, which is around 0.0127. Therefore, the strategic swinging model significantly out-
performs these random strategies. 
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Figure 4. Density plot of random swinging strategies broken down into two groups 
 

Figure 4 further breaks down the average scores of random strategies in Figure A into two groups: those 
where the batter swung at the pitch and those where the batter did not swing at the pitch. In the former case, the 
average scores of random strategies range from -0.02 to -0.016. The strategic swinging model, with an average of 
around -0.005, substantially outperforms these random strategies under this scenario. In the latter case, the average 
scores of random strategies are all around 0.028. It is interesting to note that these strategies outperform the strategic 
swinging model in this case, as the model only has a score around 0.025. When combining the two cases together, the 
model outperforms random strategies, because its advantage in the case where the batter swung more than offsets its 
disadvantage in the cases where the batter did not swing. 
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Figure 5. Quantitative advantage of strategic swinging model (y-axis) versus On-base Plus Slugging (x-axis) 
 

Figure 5 shows how well the strategic swinging model performed for each player compared to the player’s 
own decision to swing or not. These data represent all players from the 2022 season—excluding rookies—with at least 
10 at bats. Rookies were excluded from this analysis because the strategic swinging model uses a player’s past per-
formance to predict the hypothetical result of swinging at a pitch that they did not swing at. The y-axis represents the 
difference between the model’s score and the player’s score—positive numbers indicate the model outperformed the 
player’s decisions. The x-axis represents On-base Plus Slugging (OPS), a measure of hitter success. As a player’s OPS 
increases, the model is more likely to underperform relative to the player’s own decision making. Prolific hitters—
such as Aaron Judge—tended to outperform the strategic swinging model, whereas players with lower OPS—such as 
Derek Hill—did significantly worse than the model. An average baseball hitter, such as Nelson Cruz, will tend to sit 
somewhere in the middle. 
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Figure 6. Distribution of model vs player score differences for Aaron Judge and Derek Hill 
 

Figure 6 shows the approximate distribution of pitch-level differences between the strategic swinging 
model’s score and the swinging decisions of two different players—Aaron Judge and Derek Hill. Decisions where the 
model and players agreed about whether to swing or not to swing have a score difference of zero and are not included 
in this graph. These scores of zero constitute 59% of all pitches. For Aaron Judge, the median of this distribution is 
nearly zero—approximately half of the values are positive, and half are negative. The distribution is heavily left 
skewed, however, and the mean is -0.14, indicating that Aaron Judge’s swinging decisions have a 0.14 higher score 
than the strategic swinging model on average. This negative average is driven by a small number of pitches where the 
strategic swinging model determines that Aaron Judge should not have swung. In these cases, however, he chooses to 
swing, and the result is very positive (e.g., a home run). As for Derek Hill, the shape of the distribution is similar 
except that it is a bit more to the right. The mean of the distribution for Derek Hill is around 0.08, indicating that the 
strategic model on average has a 0.08 higher score than Derek Hill’s swinging decisions. 
 

 
 
Figure 7. Broken down boxplot of model vs player score differences for Aaron Judge and Derek Hill 
 

Figure 7 further refines the distribution shown in Figure 6 by categorizing the data into two distinct groups: 
instances where the strategic swinging model suggests that the players should have swung—yet they did not—repre-
sented by the boxplots at the top of each graph, and instances where the model advises against swinging—yet they did 
swing—represented by the boxplot at the bottom of each graph. As for Aaron Judge, the graph indicates that in the 
first scenario, where the model recommends swinging but the players refrain, Judge’s decision generally outperforms 
the model's recommendation, as evidenced by the center of the boxplot being clearly positioned to the left of 0. In 
contrast, in the second scenario, where the model advises against swinging but Judge swings anyway, the model's 
recommendation tends to slightly outperform Judge’s decision. However, the numerous extreme points show that the 
score differences in this second category exhibit significantly higher volatility. For instance, in one game, Aaron Judge 
came up to bat with the bases loaded. Despite the model's advice not to swing, Judge did and hit a grand slam. This 
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results in a score difference of -6.92. Conversely, in another game with the bases loaded and a full count, Judge ignored 
the model's recommendation to refrain from swinging. He struck out and left the runners stranded, leading to a score 
difference of +2.45. 

Therefore, if we were to count the amount of times the model outperformed Judge vs the amount of times 
Judge outperformed the model at a pitch level, the amount appears to be roughly equal. However, according to the 
way we evaluate the model, the model will suffer from a huge penalty whenever Judge acts against the model and 
does well. That explains why the overall difference is a negative number. The boxplot for Derek Hill tells a similar 
story except that the distribution for when he did not swing is more to the right, resulting in an overall positive average. 
 

Discussion 
 
Overall, our strategic swinging model does perform better on average than almost all random swinging decisions. 
However, the model does not necessarily outperform good hitters. The swinging decisions of more prolific baseball 
players with a higher OPS were often better than the model’s decisions, at least according to the way we evaluate the 
decisions. In addition, for cases in which the model suggested the batter not swing but they did, most of the time the 
model is making the better decision. Nevertheless, when the model is making the wrong decision in this scenario, it 
usually takes a huge penalty—such as when the player gets a multi-RBI hit that drastically changes the game. There-
fore, the average score of the model ends up being worse than the average score of batters’ strategies. The model is 
by nature more conservative than MLB hitters, as it only instructs players to swing around 21% of the time compared 
to the roughly 50% swing rate of MLB players. It is designed to identify those pitches that are very ‘hittable’ and then 
give hitters the instruction to swing.  

The efficacy of our strategic swinging model is limited by three main factors—limited data in particular 
scenarios, the difficulty in predicting and quantifying the result of hypothetical cases where the model predicts a batter 
should swing when they do not, and quantifying the success or failure of the result of a single pitch. Since our model 
requires previous seasons’ hitting data for the given player in order to make an informed decision about whether or 
not they should swing, the model does not work for rookies or players without previous hitting data. Although we did 
not try to make predictions for rookies, their data could theoretically be imputed using league averages in the given 
scenario in order for our model to make a swing suggestion. 

Evaluating the cases where the model predicts that a batter should swing—but the batter does not—is chal-
lenging. Our current approach uses a player’s past performance for the given scenario—including pitch type, pitch 
location, and count. It’s likely that tricky-to-measure in-game metrics like weather, fatigue, and momentum could 
change the ‘typical’ result of such plays, ultimately changing the evaluation of the efficacy of our model. Major league 
hitters are all very experienced baseball players, and they have developed their own ways of making swinging deci-
sions throughout their career. In addition, as players on the field, they have access to additional information that is not 
captured by our data, including specific cues and body movements from pitchers. This information constitutes a sig-
nificant part of their decision making.  

Developing a ‘fair’ metric to assess the result of a single pitch was challenging. Our approach relied on 
calculating (or estimating in cases where this value was incalculable) changes in cdrv_288. This variable is constructed 
using league averages for the change in expected runs scored before the pitch is thrown and after the result of the 
pitch. Several factors—including the specific player at bat, the combination of players playing defense, or the current 
state and the stakes of the game—certainly influence the change in expected runs scored before and after the pitch. 
Future work might consider using a different, more nuanced method for evaluating the efficacy of the model, such as 
assessing the result of the entire at bat instead of using pitch-by-pitch changes in expected runs scored. Also, the 
hyperparameters for the decision making process could be tuned. If given more time, we would run a grid search to 
look for the best hyperparameters that can maximize the model score.  
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