Survey of Carbendazim and Organophosphate Residues Among Organic and Non-Organic Produce

Authors

  • Matthew Brummett Park University
  • Dr. Azin Agah Park University

DOI:

https://doi.org/10.47611/jsr.v13i1.2313

Keywords:

Carbendazim, Organophosphates, Benzimidazole, Fungicides, Cancer, Agricultural Contaminants, Organic Labeling, Organophosphate, Fungicide, Food Contamination

Abstract

Pesticides are chemicals used to control pests and diseases in crops, however, excessive or improper application can lead to the presence of harmful contaminants in food. Organophosphates have been utilized in various crops such as fruits, vegetables, cereals and field crops and present health risks to farmworkers and consumers if not used properly. Chronic exposure to low levels has been associated with long-term health effects and increased risk of certain types of cancers. Carbendazim is a systemic fungicide that belongs to the benzimidazole chemical group and is widely used in agriculture to control fungal diseases in crops including fruits, vegetables and ornamental plants. While carbendazim has been widely used in agriculture for several decades, there have been concerns regarding its potential health and environmental effects. In this study, we used commercially available ELISA kits to detect and quantify the levels of these two commonly used pesticides in a panel of organic and non-organic fruits and vegetables. We detected the presence of organophosphate in broccoli and, with the exception of non-organic oranges and apples, carbendazim levels in all samples tested were below 0.5 parts per billion.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References or Bibliography

Abolaji, A., Awogbindin, I., Adedara, I., & Farombi, E. (2016). Insecticide chlorpyrifos and fungicide carbendazim, common food contaminants mixture, induce hepatic, renal, and splenic oxidative damage in female rats. Human & Experimental Toxicology, 36(5), 483–493. https://doi.org/10.1177/0960327116652459

Bentley, K. S., Kirkland, D., Murphy, M., & Marshall, R. (2000). Evaluation of thresholds for benomyl- and carbendazim-induced aneuploidy in cultured human lymphocytes using fluorescence in situ hybridization. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 464(1), 41–51. https://doi.org/10.1016/s1383-5718(99)00165-5

Blanc-Lapierre, A., Bouvier, G., Gruber, A., Leffondré, K., Lebailly, P., Fabrigoule, C., & Baldi, I. (2013). Cognitive Disorders and Occupational Exposure to Organophosphates: Results From the PHYTONER Study. American Journal of Epidemiology, 177(10), 1086–1096. https://doi.org/10.1093/aje/kws346

van den Brandhof, E.-J., & Montforts, M. (2010). Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicology and Environmental Safety, 73(8), 1862–1866. https://doi.org/10.1016/j.ecoenv.2010.08.031

Davidse, L. C. (1986). Benzimidazole Fungicides: Mechanism of Action and Biological Impact. Annual Review of Phytopathology, 24(1), 43–65. https://doi.org/10.1146/annurev.py.24.090186.000355

Engel, S. M., Wetmur, J., Chen, J., Zhu, C., Barr, D. B., Canfield, R. L., & Wolff, M. S. (2011). Prenatal Exposure to Organophosphates, Paraoxonase 1, and Cognitive Development in Childhood. Environmental Health Perspectives, 119(8), 1182–1188. https://doi.org/10.1289/ehp.1003183

Kadalmani B, Girija R, Faridha A, Akbarsha MA (2002). Male reproductive toxic effects of carbendazim: hitherto unreported targets in testis. Indian J Exp Biol. Jan;40(1):40-4.

Koutros, S., Harris, S. A., Spinelli, J. J., Blair, A., McLaughlin, J., Shelia Hoar Zahm, Kim, S., Albert, P. S., Kachuri, L., Pahwa, M., Cantor, K. P., Weisenburger, D. D., Pahwa, P., Pardo, L., Dosman, J. A., Demers, P. A., & Beane, L. E. (2019). Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the north American pooled project. Environment International, 127, 199–205. https://doi.org/10.1016/j.envint.2019.03.018

Latifovic, L., Freeman, L. E. B., Spinelli, J. J., Pahwa, M., Kachuri, L., Blair, A., Cantor, K. P., Zahm, S. H., Weisenburger, D. D., McLaughlin, J. R., Dosman, J. A., Pahwa, P., Koutros, S., Demers, P. A., & Harris, S. A. (2020). Pesticide use and risk of Hodgkin lymphoma: results from the North American Pooled Project (NAPP). Cancer Causes & Control, 31(6), 583–599. https://doi.org/10.1007/s10552-020-01301-4

Lee, S and Barron, M (2016). Mechanism-Based Analysis of Acetylcholinesterase Inhibitory Potency of Organophosphates, Carbamates, and Their Analogs. 17th International Conference on QSAR in Environmental and Health Sciences, Miami Beach, FL, June 13 - 17.

Lenina, O. A., Zueva, I. V., Zobov, V. V., Semenov, V. E., Masson, P., & Petrov, K. A. (2020). Slow-binding reversible inhibitor of acetylcholinesterase with long-lasting action for prophylaxis of organophosphate poisoning. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-73822-6

Lerro, C. C., Koutros, S., Andreotti, G., Friesen, M. C., Alavanja, M. C., Blair, A., Hoppin, J. A., Sandler, D. P., Lubin, J. H., Ma, X., Zhang, Y., & Beane Freeman, L. E. (2015). Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occupational and Environmental Medicine, 72(10), 736–744. https://doi.org/10.1136/oemed-2014-102798

Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B. (2011). Effect of Endocrine Disruptor Pesticides: A Review. International Journal of Environmental Research and Public Health, 8(6), 2265–2303. https://doi.org/10.3390/ijerph8062265

Nakai, M., & Hess, R. A. (1997). Effects of carbendazim (methyl 2-benzimidazole carbamate; MBC) on meiotic spermatocytes and subsequent spermiogenesis in the rat testis. The Anatomical Record, 247(3), 379–387. https://doi.org/10.1002/(sici)1097-0185(199703)247:3%3C379::aid-ar9%3E3.0.co;2-p

Patisaul, H. B., Behl, M., Birnbaum, L. S., Blum, A., Diamond, M. L., Rojello Fernández, S., Hogberg, H. T., Kwiatkowski, C. F., Page, J. D., Soehl, A., & Stapleton, H. M. (2021). Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. Environmental Health Perspectives, 129(10). https://doi.org/10.1289/ehp9285

Pedroso, T. M. A., Benvindo-Souza, M., de Araújo Nascimento, F., Woch, J., dos Reis, F. G., & de Melo e Silva, D. (2021). Cancer and occupational exposure to pesticides: a bibliometric study of the past 10 years. Environmental Science and Pollution Research, 29(12), 17464–17475. https://doi.org/10.1007/s11356-021-17031-2

Prathiksha, J., Narasimhamurthy, R. K., Dsouza, H. S., & Mumbrekar, K. D. (2023). Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Molecular biology reports, 50(6), 5465–5479. https://doi.org/10.1007/s11033-023-08424-2

Tsai, Y.-H., & Lein, P. J. (2021). Mechanisms of organophosphate neurotoxicity. Current Opinion in Toxicology, 26, 49–60. https://doi.org/10.1016/j.cotox.2021.04.002

VoPham, T., Bertrand, K. A., Hart, J. E., Laden, F., Brooks, M. M., Yuan, J.-M., Talbott, E. O., Ruddell, D., Chang, C. C. H., & Weissfeld, J. L. (2017). Pesticide exposure and liver cancer: a review. Cancer Causes & Control, 28(3), 177–190. https://doi.org/10.1007/s10552-017-0854-6

Yu, G., Guo, Q., Xie, L., Liu, Y., & Wang, X. (2009). Effects of subchronic exposure to carbendazim on spermatogenesis and fertility in male rats. Toxicology and Industrial Health, 25(1), 41–47. https://doi.org/10.1177/0748233709103033

Zhou, Y., Xu, J., Zhu, Y., Duan, Y., & Zhou, M. (2016). Mechanism of Action of the Benzimidazole Fungicide on Fusarium graminearum: Interfering with Polymerization of Monomeric Tubulin But Not Polymerized Microtubule. Phytopathology, 106(8), 807–813. https://doi.org/10.1094/phyto-08-15-0186-r

Published

02-29-2024

How to Cite

Brummett, M., & Agah, A. (2024). Survey of Carbendazim and Organophosphate Residues Among Organic and Non-Organic Produce. Journal of Student Research, 13(1). https://doi.org/10.47611/jsr.v13i1.2313

Issue

Section

Research Articles